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Abstract

Environmental regulation often has to be designed using asymmetric and incomplete informa-

tion. Polluting �rms, for instance, are normally privately better informed than the regulator

with regard to the costs of reducing their emissions. However, even regulated �rms may not

have accurate information about their own abatement costs. The regulator is eager to know

this private information in order to implement the most e�cient environmental policy given

the information at hand. In this thesis, I study, among other things, how auction mechanisms

can be used to incentivize �rms to reveal their private information to the regulator.

One of the central questions in pollution control theory is whether a price instrument like an

emission tax or a quantity instrument like tradeable permits is better in environmental or

climate policy. In climate policy, emissions trading programs have been more popular both

in Europe and the U.S. Also, auctions and in particular uniform price auction formats have

been used as an initial allocation method in many trading programs.

In the �rst two essays of this thesis, I study two-stage mechanisms for controlling pollution.

In the �rst stage, the regulator conducts a generalized multi-unit Vickrey auction in order to

allocate emission permits to �rms. More importantly, the auction mechanism aims to collect

private information from regulated �rms. In the second stage, the regulator implements a

range of environmental policy instruments, in the light of the information from the auction.

In the �rst essay, the regulator uses either a constant price regulation or a program of

tradeable permits with a �xed supply of permits. I show that �rms have less incentive to bid

sincerely in an auction when using a tax instrument compared to emissions trading.

In the second essay, the regulator implements a tradeable permits program in the second

stage, where the permit supply is elastic in price. Moreover, the permit market su�ers some

frictions, which increase the costs of trading. I derive incentive compatibility conditions for

�rms to bid sincerely in the �rst-stage auction given the regulation in the second stage and

the various information structures.

In the third essay, I compare the Vickrey and uniform price auction formats in allocations

of emission allowances without an allowance resale market. Firms may collude and thus

coordinate their bidding behavior in auctions. The Vickrey auction is e�cient but the rev-

enues decrease the more �rms collude. However, the e�ciency and revenues of uniform price

auctions depend heavily on the coalition game and the structure of the market.
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Tiivistelmä

Ympäristöpolitiikan ohjauskeinot on usein suunniteltava ilman täydellistä tietämystä päästö-

jen vähentämisen kustannuksista tai hyödyistä. Vaikka saastuttavien yritysten käsitys mah-

dollisista päästövähennysteknologioistaan voi olla epävarmaa, saattaa yrityksillä olla viran-

omaista parempi ymmärrys niiden kustannuksista. Viranomainen haluaisi saada yritysten tie-

don käyttöönsä suunnitellakseen ohjauskeinot paremmin. Tässä väitöskirjassa tutkin muun

muassa, miten huutokauppamekanismeja voidaan hyödyntää yritysten palkitsemiseksi, jotta

ne paljastaisivat totuudenmukaisesti tietämyksensä viranomaiselle.

Yksi keskeisimmistä ympäristökontrollin teoriaan liittyvistä kysymyksistä on perinteisesti ol-

lut, tulisiko saastuttamista ohjata hintainstrumentilla kuten veroilla vai määräinstrumentilla

kuten kaupattavilla päästöoikeuksilla. Ilmastopolitiikassa päästöoikeuksien kauppaohjelmat

ovat olleet suositumpia niin Euroopassa kuin Yhdysvalloissa. Huutokauppaa on sovellettu

monessa kauppaohjelmassa päästöoikeuksien alkujakomenetelmänä.

Väitöskirjan kahdessa ensimmäisessä esseessä tutkin kaksivaiheista ympäristöohjausta. En-

simmäisessä vaiheessa viranomainen huutokauppaa päästöoikeuksia saastuttaville yrityksille

hyödyntäen Vickrey huutokauppaa. Huutokauppamekanismin avulla viranomainen oppii yri-

tysten puhdistuskustannuksista. Ohjausmekanismin toisessa vaiheessa viranomainen asettaa

yrityksille erilaisia ympäristöpolitiikan ohjauskeinoja hyödyntäen oppimaansa.

Ensimmäisessä esseessä viranomainen valitsee joko kiinteän hintaohjauksen tai päästöoikeuk-

sien kaupan, jossa markkinoille jaettavien päästöoikeuksien määrä on kiinteä. Osoitan, että

yritysten halukkuus paljastaa tietonsa totuudenmukaisesti huutokaupassa on rajoittuneem-

paa, kun käytössä on vero-ohjaus, kuin jos varsinaiseksi ohjauskeinoksi valitaan päästökaup-

pa.

Toisessa esseessä viranomainen valitsee toisen vaiheen ohjauskeinoksi päästöoikeuksien kau-

pan, jossa päästöoikeuksien tarjonta on joustava hinnan suhteen. Lisäksi päästöoikeusmark-

kinoiden toimintaan liittyy kaupankäynnin kustannuksia lisäävää kitkaa. Johdan ehdot tie-

torakenteelle, jolloin yritykset paljastavat tietonsa totuudenmukaisesti huutokaupassa.

Kolmannessa esseessä vertailen Vickrey huutokauppaa ja mm. EU:n päästökaupassa sovel-

lettua yhtenäishinnoittelun huutokauppaa, kun yritykset eivät voi käydä kauppaa päästöoi-

keuksien jälkimarkkinoilla. Yritykset voivat kuitenkin koordinoida käyttäytymistään pääs-

töoikeuksien huutokaupassa. Vickrey huutokauppa jakaa päästöoikeudet tehokkaasti, mutta

huutokaupan tuotot alenevat yritysten koordinoidessa käyttäytymistään. Yhtenäishinnoitte-

lun huutokaupan tulokset ovat riippuvaisia markkinarakenteesta ja koalitionmuodostuksen

luonteesta.
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Chapter 1

Introduction
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1.1 Background

In a competitive economy, where all goods and services are private, all goods and services have

markets, all markets clear, all producers and consumers are price-takers and have complete

information, there are no externalities, and consumers' preferences and producers' production

functions satisfy certain conditions, a market mechanism with an appropriate price vector

results in a Pareto optimal (e�cient) allocation of resources. This is the �rst fundamental

theorem of welfare economics. The second fundamental theorem of welfare economics says

that any desired Pareto optimal allocation can be achieved by introducing appropriate lump-

sum transfers. Once such transfers are instituted, the competitive market mechanism will

take care of the e�cient, �rst-best allocation. (E.g. Mas-Colell et al. 1995.)

In practice, the market mechanism is never completely perfect, and the famous �invisible

hand� does not lead to the Pareto optimal allocation. In this thesis, I consider a number

of market failures and examine regulatory mechanisms to correct them. In particular, I

study the interactions of the pollution externality problem together with asymmetric and

incomplete information. I examine how auction mechanisms can be employed to manage

market failures, and particularly the problem of asymmetric information.

Pollution is a traditional example of a negative externality. Producers (or �rms) produce

valuable goods and services for consumers. Often, as a by-product, �rms produce bads such

as pollution. That is to say, �rms use e.g. clean air or water as inputs in their production.

Clean air and water are common resources. They are owned by all the agents in the economy

and, at the same time, by none of the agents. Thus the property rights to these common

resources are not clearly de�ned and it is impossible for agents to negotiate the use of these

resources. Without any intervention by the social planner, pollution is not internalized into

the pricing system. When the bads are external to the economic system, producers do not

take them into account in their production decisions.

Information is complete when all the information a�ecting the values of goods and bads is

completely known by all the agents in the economy. Under these conditions, i.e. when the

pollution externality is the only market failure, the social planner can correct the pricing

system and fully internalize the externality problem. The social planner may use various

regulatory instruments to achieve the Pareto optimal allocation. However, the distribution

of wealth may vary depending on the instrument used. On the other hand, if the relevant

information is not available, the intervention is not �rst-best and the instruments may also

di�er in their e�ciency properties.

Furthermore, information may also be distributed asymmetrically between economic agents
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and the social planner. Firstly, if producers or consumers know more about the external-

ity problem than the social planner does, then incentive mechanisms to reveal this private

information to the social planner are called for. In this thesis I examine the performance

of auction mechanisms in revealing the private information of �rms about their emission

reduction costs. Secondly, the market mechanism may fail if the information is distributed

asymmetrically between market participants. Also, in this case, auction mechanisms may

improve the functioning of markets by providing more accurate and more evenly distributed

information and bringing the allocation of resources closer to the Pareto optimal allocation.

The study also covers two other types of market failures: transaction costs and market

power. The perfect market hypothesis assumes that transactions between economic agents

are costless. However, when the number of agents is large, it may be a time-consuming task

for an agent to �nd someone who is willing to trade products with him. Moreover, even if the

market participants are matched, the bargaining process and decision-making may be costly

for them. Also, monitoring pollution and enforcement of regulations may cause costs for the

social planner and economic agents. (E.g. Hahn and Stavins 2011.)

Economic agents have no market power if they assume that their actions have no impact

on market prices. They take prices as given. This is a somewhat contradictory assumption,

because in the general equilibrium theory, under certain conditions, every action a�ects

everything in the economy. The price-taking assumption is based on the large number of

both producers and consumers in the economy. Thus the e�ect of one agent is negligible on

the equilibrium outcome. In contrast, if an agent notices that he can in�uence the equilibrium

price by his production or consumption decisions, it will steer the equilibrium away from the

competitive outcome and the equilibrium price will not reveal the true costs of (marginal)

production or the true value of (marginal) consumption. The equilibrium allocation is not

e�cient and there are gains from trade that are not realized in the economy.

This thesis is a collection of three independent essays and an introduction. The �rst two

essays, in Chapters 2 and 3, study pollution regulation under incomplete and asymmetric

information. The third essay, in Chapter 4, examines market power and, in particular, the

collusive behavior of �rms in emission permit auctions.

This chapter is an introduction. It is organized as follows. In the next two sections, I shortly

review the literature on pollution regulation (Section 1.2) and auction mechanisms (Section

1.3), in the light of the above market failures. In Section 1.4, I introduce the a�ne linear

model, which is used in the two �rst essays. I also explain how this information structure

re�ects the problem of climate change. In the last section, I summarize the essays and explain

how they contribute to the literature on pollution regulation.
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1.2 Regulating pollution

Pigou (1920) was the �rst to address how the pollution externality could be internalized

into the economic system. Levying, for instance, a uniform emission tax on polluting �rms,

equaling the marginal damage of pollution, would provide the right incentives for �rms to

reduce emissions. Each �rm would �nd it pro�table to reduce its emissions to a level where

the marginal abatement cost is equal to the Pigouvian tax. Coase (1960) challenged Pigou's

view. Coase states that when transaction costs are zero and property rights are well de�ned,

the Pigouvian solutions are unnecessary and government actions are not needed. Economic

agents will �nd the most e�cient solution by bargaining and the original distribution of

property rights between economic agents will not disturb this e�cient solution. This idea

is known as the so-called Coase Theorem, formulated by Stigler (1966). However, as Coase

himself said, this was not the actual message of the original paper:

I tend to regard the Coase Theorem as a stepping stone on the way to an

analysis of an economy with positive transaction costs. [...] My conclusion; let us

study the world of positive transaction costs. (Coase 1992.)1

Nevertheless, the basic idea of another and nowadays relatively popular environmental reg-

ulatory instrument is based on the Coase Theorem. Namely, the �rst ideas of emissions

trading were formulated by Crocker (1966) and Dales (1968) to regulate air and water pollu-

tion, respectively. Brie�y, in a cap-and-trade emissions trading program, the regulator �rst

announces the total amount of emissions permitted for regulated �rms. This is the emis-

sions cap. Second, the regulator allocates pollution permits to �rms up to the announced

emissions cap by using some initial allocation mechanism.2 Third, �rms are not allowed

to pollute more emissions than they have permits in aggregate, but they are free to trade

permits among themselves in the markets. Thus the emissions of a particular �rm may

exceed its initial allocation, but not its �nal permit holding. The emissions trading pro-

gram provides a cost-e�cient solution to pollution control if the marginal abatement costs

are equal among regulated �rms in equilibrium. In the spirit of the Coase Theorem, Mont-

gomery (1972) proved that tradeable permits would indeed provide a cost-e�cient solution

under competitive market conditions without any transaction costs. In addition, the solu-

1This is the lecture by Ronald Coase in memory of Alfred Nobel, December 9, 1991.
2The initial allocation of permits can be free using some grandfathering or benchmarking rules, or it can

be conducted by an auction. In the literature, tradeable permits are also called allowances, licenses, quotas
or rights. I use the term permit in Chapters 2 and 3 and the term allowance in Chapter 4. Note that in
the European Union Emissions Trading System (EU ETS) permits stand for administrative permissions for
given installations emitting greenhouse gases, whereas allowances stand for tradeable pollution rights.
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tion is independent of the initial allocation of permits. Hahn and Stavins (2011) call this the

independence property.

If the externality problem was the only market failure, the regulator could guarantee an

e�cient solution either by levying a Pigouvian tax or a system of tradeable permits or some

other regulatory instrument, such as non-tradeable permits or emission reduction subsidies.

In this thesis I consider only the �rst two: an emission tax and tradeable permits. The

reason is two-fold. First, there is an ongoing policy debate as to whether taxes or tradeable

permits are preferable in environmental policy and in particular in climate policy. Second,

since Pigou (1920) and Coase (1960), the academic discussion about the relative merits of

price regulation (e.g. taxes) and quantity regulation (e.g. tradeable permits) has broadened

in many respects. However, contrary to the advice of Ronald Coase, the academic discussion

about prices versus quantities was not initially extended to questions of transaction costs.

Instead, incomplete information was shown to have an impact on the relative merits of prices

and quantities.

1.2.1 Incomplete information

Weitzman (1974) derives a rule for the choice between price and quantity controls, when

abatement costs and the damage caused by pollution are uncertain.3 Weitzman uses �rst-

order linear approximations of the marginal abatement costs and a marginal damage function

and assumes that the uncertainty is captured entirely by the constant terms of these linear

functions.4 If the abatement costs and the pollution damage are not correlated, the rule is

simple. The regulator should control the quantity of pollution and use quantity instruments

if the marginal bene�ts of pollution reduction increase more rapidly than the marginal costs

of reduction. On the other hand, the price instrument provides a lower expected welfare

loss if the slope of the marginal abatement costs is steeper than the slope of the marginal

damage function. The reason for this is intuitive. If the aggregate marginal abatement costs

are greater than expected, the equilibrium emissions will exceed the optimal level under a

uniform tax and will be below the optimal level under quantity control and vice versa, if

the marginal abatement costs are lower than expected. Hence, if the slope of the aggregate

marginal abatement costs is steeper (�atter) than the slope of the marginal damage, the closer

(further) the resulting emissions will be from the optimal level under a tax as compared to

quantity control.

3Weitzman (1974) formulates the model as a general planning problem. However, he uses the problem of
air pollution as a possible example of the formulation.

4See Malcomson (1978) for a critique of the linear approximations.
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However, emission reduction costs and bene�ts may have a statistical dependence on each

other (see Stavins 1996). Under these circumstances, a positive correlation between emission

reduction costs and bene�ts will favor quantity control and a negative correlation will favor

price regulation as compared to a regime of statistical independence between emission reduc-

tion bene�ts and costs. If the marginal abatement costs are not as expected, the positive

correlation will move the optimal emission level towards the expected level and thus towards

the emissions cap of the quantity control.

It is important to emphasize some relevant points related to Weitzman's (1974) model. First,

Weitzman assumes that as much information as it is feasible to gather has already been

obtained by the regulator when designing and implementing the policy instruments. However,

regulation policy will have been set before the uncertainty about abatement costs or pollution

damage has been resolved. After implementation, �rms will acquire more information about

their true abatement costs and react to the new knowledge. Second, two policy alternatives

are constant: the pollution tax is uniform and set at the level of the expected �rst-best price,

and the total allowable pollution in the quantity control is set at the expected �rst-best level.

These two will not adjust to any changes in abatement costs or pollution damage. Third,

even though Weitzman does not consider emissions trading in his original paper, quantity

control can easily be extended to the case of tradeable permits. Since Weitzman's original

contribution, the literature on prices versus quantities has extended to compare tax and

tradeable permits e.g. in cases of stock pollution (e.g. Hoel and Karp 2001, 2002, Newell and

Pizer 2003, Karp and Zhang 2012), incomplete enforcement (e.g. Montero 2002), banking of

permits (e.g. Fell et al. 2012), technology choice (e.g. Krysiak 2008) or multiple pollutants

(e.g. Ambec and Coria 2013). In these papers, �rms are assumed to be price-takers in the

emissions permit market if the trading of permits is allowed.5

The price or quantity control scenarios in Weitzman (1974) can be improved by making the

regulatory schemes non-constant. Weitzman (1978) himself proposes a tax regulation, where

the marginal tax rate is a linear function of �rms' emissions. Roberts and Spence (1976), on

the other hand, introduce a hybrid scheme. In their hybrid regulation, the aggregate supply

of pollution permits is not constant. In the simplest case, supply is represented by a step

function where the equilibrium price of the market (with a �xed supply of pollution permits)

is constrained by two additional price instruments: a price �oor and a price cap. If the price

of pollution permits falls to the price �oor due to lower than expected abatement costs, the

regulator will buy back permits from the �rms at the �oor price. If the abatement costs

are higher than expected and thus the equilibrium price becomes too high, the regulator

5Firms are also assumed to be risk-neutral. See Ben-David et al. (2000) or Baldursson and von der Fehr
(2004) for an analysis of risk-aversive �rms under a tradeable permit regulatory regime.
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will set a fee for pollution, i.e. it sells permits to �rms at the price cap. Furthermore,

adding subsequent steps into the supply function and increasing the number of steps to the

limit results in a continuous permit supply function (Roberts and Spence 1976, Appendix).

The optimal aggregate permit supply function is equal to the expected pollution damage

function. Moreover, if the pollution is uniformly mixed and the permit market is perfect,

tradeable permits with a non-constant permit supply will perform better than non-constant

taxes (Kennedy et al. 2010, Yates 2012).

1.2.2 Asymmetric information

It is realistic to assume that, at the implementation stage of pollution regulation, �rms'

knowledge about their abatement costs is better than the social planner's information. Even

if regulated �rms are uncertain about their future costs of emission reductions, they have

more accurate information about their production technologies, possibilities to reduce emis-

sions, knowledge of the price formation of essential inputs and outputs and so forth. In

addition, �rms conduct R&D activities and they have strong incentives not to reveal infor-

mation about their own innovation processes outside the company. At the same time, such

information is valuable to the regulator if it improves the e�ciency of regulations. Firms

are, however, not willing to reveal such information sincerely. Depending on the planned reg-

ulatory scheme, �rms may have incentives either to overestimate or to underestimate their

uncertain abatement costs. Lewis (1996) provides a review of this topic. She points out

that in most instances pure forms of marketable permits or emission taxes are insu�cient

regulatory instruments when economic agents are asymmetrically informed.

Kwerel (1977) was one of the �rst to introduce an incentive mechanism for the disclosure

of �rms' information in pollution regulation. The incentive mechanism of Kwerel has two

building blocks. The regulator 1) issues a �xed amount of tradeable pollution permits6

denoted by L, and 2) sets a subsidy e per permits in excess of emissions produced by �rms.

Hence the regulator commits to buy back those permits which are not used at price e. In

addition, before the implementation of the regulation, there is one round of communication

between regulated �rms and the regulator. Firms are asked to report their clean-up costs

to the regulator. Prior to reporting, the regulator announces that it will set the parameters

L and e as follows. The expected marginal damage equals the reported aggregate marginal

clean-up costs at pollution level L. Moreover, subsidy e equals the level of these marginal

functions evaluated at L. Kwerel argues that in a competitive permit market, reporting

6Kwerel uses the term transferable licenses.
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sincerely to the regulator is a Nash equilibrium of this game. That is, if every other �rm is

reporting sincerely, it is also the best response for each �rm to report sincerely.

Kwerel, however, says nothing about how the regulator initially distributes permits to �rms.

Montero (2008) argues that, depending on the initial allocation method, �rms may �nd

more pro�table strategies compared to the sincere reporting strategies in Kwerel's scheme.

If permits are allocated for free and if �rms are able to coordinate their reporting strategies,

regulation becomes ine�cient. Also, if permits are allocated in a uniform price auction and

�rms use low-price equilibrium strategies in the auction, the allocation will not be e�cient.

Vickrey (1961), Clarke (1971) and Groves (1973) provide an e�cient (VCG) mechanism for

the provision of public goods, where agents are privately informed about the costs of their

actions. The VCG mechanism implements e�cient allocation in dominant strategies.7 That

is, whatever other �rms report to the regulator about their emission reduction costs, it is a

dominant strategy for each �rm to report its costs sincerely to the regulator. The intuition

of the mechanism is explained in later sections. Dasgupta, Hammond and Maskin (1980) use

the VCG mechanism to implement a tax regulation for privately informed �rms (DHM tax

mechanism). Montero (2008) describes a simple auction mechanism where a discriminatory

Vickrey pricing rule is used to induce �rms to bid sincerely. Both mechanisms, the DHM tax

mechanism and Montero's auction mechanism, allocate emission permits e�ciently among

regulated �rms, given the increasing expected marginal damage of pollution. Montero (2008)

argues, however, that these mechanisms di�er in two important ways. First, the DHM tax

mechanism fails to allocate permits e�ciently when the supply of permits is �xed. Second,

collusive actions may distort the �rst-best property of the DHM tax mechanism. Montero, in

contrast, shows that the e�cient allocation of the VCG auction mechanism is not distorted

by the inelastic supply of permits or the collusive actions of �rms. Thus, even if �rms are able

to coordinate their bidding strategies prior to the auction, the mechanism assigns an e�cient

amount of permits to colluding �rms. If a coalition agrees on the e�cient distribution of

permits within the coalition, then the allocation is e�cient. Finally, it is important to note

that in Kwerel (1977), Dasgupta et al. (1980) and Montero (2008), agents' values are private

and polluting �rms know their abatement costs exactly.

In addition to the problem of asymmetric information between the social planner and �rms,

Coasian bargaining may not work as intended if the information is asymmetric between �rms.

Then the otherwise perfect market may fail to assign objects e�ciently. To give an intuition

of this, consider the following simple example.8 Suppose that two �rms are trading a single

7The VCG mechanism is a multi-unit extension of a single-unit Vickrey auction (i.e. a single-unit second-
price auction). However, the term Vickrey auction is used occasionally in a multi-unit context.

8Chatterjee and Samuelson (1983) provide a more general analysis of this example.
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pollution permit bilaterally. Suppose also that the marginal value of the permit is vS for the

seller and vB for the buyer, where vB > vS. Hence, there are gains from trade, because any

price between vS and vB would not make the �rms worse o� and at least one of the �rms

better o�. With complete information, the �rms would bargain about the price and it would

be in both �rms' interest to get the trade done. If the seller has all the bargaining power, it

can reap all the gains from the trade and the resulting equilibrium price, for instance, in a

take-it-or-leave-it game9 would be p = vB. The trading is e�cient, because the object goes to

the agent who values it most. However, if the �rms do not have exact information about the

value of the trading partner, the trade may not occur. For instance, in the take-it-or-leave-it

game, suppose that f (vB) is the density of the buyer's valuation with a support vB ∈ [a, b],

where vS < b. Hence, vB is a random draw from the distribution F (vB). Suppose also

that the true value vB is known by the buyer, whereas the seller knows only the distribution

F (vB). The seller maximizes its expected gains from trade US (p) =
´ b
p

(p− vS) f (vB) dvB

with respect to the o�er price p ≥ vS. Then the optimal o�er price by the seller satis�es

p = vS + 1−F (p)
f(p)

. If the buyer's true value is less than the o�ered price, i.e. p > vB, no trade

is done even if vB > vS.

In fact, Myerson and Satterthwaite (1983) show that generally there is no Bayesian incentive

compatible and individually rational allocation mechanism that can guarantee e�cient allo-

cation in bilateral trading. This is an important result. Moreover, the Vickrey-Clarke-Groves

mechanism would provide e�cient allocation (with private values), but one relevant problem

of the VCGmechanism is that it is not budget-balanced. Hence, in order to guarantee e�cient

allocation under asymmetric information between traders, there should be a coordinator or

broker to provide extra funding. This is one of the central reasons why auction mechanisms

are needed. In auctions, where all the agents are on the demand side, e�cient allocation can

be achieved by collecting money from the bidders and thus the budget is unbalanced to the

regulator's bene�t. Moreover, revenues from the auction can be used in other sectors of the

economy.10

1.2.3 Transaction costs

Following the so-called Coase Theorem, Stavins (1995) was the �rst to show how the costs of

trading may in�uence the equilibrium of the emissions permit market. Transaction costs may

a�ect the cost-e�ciency of the market and the independence property of the initial allocation

of permits. Transaction costs may be borne from various sources. Stavins (1995) identi�es

9The take-it-or-leave-it game is also called the ultimatum game.
10See also Lewis (1996).
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three potential sources in the permit markets: 1) search and information, 2) bargaining and

decision, and 3) monitoring and enforcement. Furthermore, whether the marginal transaction

costs are increasing, constant or decreasing has di�erent implications for the independence

property (see Stavins 1995 for a discussion of the sources of di�erent types of transaction

costs). Stavins shows that if the marginal transaction costs are constant, the �nal allocation

of allowances is independent of the pre-trade allocation. The cost-e�ciency, however, is not

achieved unless the pre-trade allocation is already Pareto optimal. The gains from trade are

decreased due to the transaction costs and not all, otherwise bene�cial, trades are conducted.

With increasing marginal transaction costs, the closer the pre-trade allocation is to the Pareto

optimal allocation, the closer the equilibrium allocation is to the e�cient solution. Hence

the independence property fails to hold. With decreasing marginal transaction costs, there

are scale economies from trading and the shift in the pre-trade allocation away from e�cient

allocation results in an equilibrium outcome which is closer to the e�cient solution than the

post-trading outcome without the shift. An intuitively similar result with decreasing marginal

transaction costs is provided by Liski (2001), who examines a case where transaction costs are

a function of market size. In thick markets, transaction costs are presumably lower than in

thin markets and transaction costs vanish if the pre-trade allocation of permits is signi�cantly

di�erent from the e�cient allocation.11

1.2.4 Market power

Traditionally, oligopolistic competition, i.e. competition between strategic agents, is modeled

by quantity competition à la Cournot or by price competition à la Bertrand. In both models,

the equilibrium is close to the competitive equilibrium when the number of agents increases.

The �rst contribution concerning market power in emissions trading markets was made by

Hahn (1984), who considers one dominant �rm in the permit market. If the initial allocation

of permits is not at the e�cient level, the dominant �rm manipulates the permit market price

and the equilibrium is not e�cient. If the dominant �rm is on the supply side of the market,

it drives the price up by reducing sales of permits and if it is on the demand side, it steers the

price downwards by reducing purchases of permits. However, this market power vanishes if

the allocation of the dominant �rm is at the competitive equilibrium at the outset. Misiolek

and Elder (1989) extend the dominant �rm model to cover output markets. Furthermore,

models of market power in emission permit markets are extended to a dynamic set-up by

Liski and Montero (e.g. 2006, 2011) and to an oligopolistic setting by e.g. von der Fehr

11See also Montero (1998), who examines the combined e�ect of transaction costs and uncertainty on trade
approval.
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(1993) and recently by Malueg and Yates (2009) and Lappi (2012). Contrary to previous

studies of Cournot competition, in the model of Malueg and Yates �rms compete using linear

trading schedules and all the players act strategically in the permit market.12

I, however, consider oligopolistic competition in multi-unit auctions. In auction models,

oligopolistic agents compete with price-quantity pairs, i.e. with supply13 or demand schedules

as in Malueg and Yates (2009). In these models, strategic bidding does not always result in

a competitive outcome even if the number of bidders increases to the limit (see Wilson 1979,

Back and Zender 1993). Another and related aspect of strategic bidding is collusion, which

is a central concept of the oligopoly theory (Vives 1999). I consider collusive behavior in

auctions, where �rms coordinate their bidding strategies. Collusion may a�ect the e�ciency

and revenues of the auction. These issues are discussed in more detail in the next section.

1.3 Auction mechanisms

In auctions of emission permits, the seller has multiple homogenous units to sell and bid-

ders want multiple units. Most of the theoretical literature on auctions concerns single-unit

auctions. The theory of multi-unit auctions is much less developed than single-unit auc-

tion theory. Next, I shortly review some central results of single-unit auction theory and

then introduce and discuss the properties of some of the most popular multi-unit auction

mechanisms.

1.3.1 Single-unit auctions

The benchmark model of auction theory is the independent private values (IPV) model of

a single unit. The risk-neutral seller has a single object to sell to a number of n risk-

neutral bidders. Bidders have values for the object, v1, . . . , vn, identically and independently

distributed with a cumulative distribution function F (v).

There are four traditional single-unit auction designs. In a �rst-price sealed bid auction,

bidders submit their bids simultaneously to the auctioneer. The bidder with the highest bid

wins the object and pays her bid. In a second-price sealed bid auction (or Vickrey auction)

she pays the second-highest bid. Two most common open (or dynamic) auction designs are

the ascending-bid auction (English auction) and the descending-bid auction (Dutch auction).

For instance, in a typical English auction, the auctioneer �rst announces a starting or reserve

12E.g. Montero (2009) reviews the literature on market power in pollution permit markets.
13Firms compete with supply schedules in a procurement setting.
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price, and bidders start to bid with increasing bids. The auction continues until only one

bidder remains. The bidder with the highest bid wins and pays her bid for the object. In

a descending auction, the auctioneer starts at a high price and lowers the price until one of

the bidders calls that she is willing to buy the object at the current price.

In the IPV model, the second-price auction and the ascending auction are (almost) strategi-

cally equivalent. In the second-price auction it is a dominant strategy for each bidder to bid

her true value of the object. Hence, the payment is the value for the object of the highest

loser, and the winner's bid does not a�ect this payment. Expected pro�ts are maximized

when bidding is truthfull. In the ascending auction, bidders remain until the price exceeds

their values. Hence the auction stops when the price (incrementally) exceeds the second-

highest value. The �rst-price auction and the Dutch auction are strategically equivalent in

the IPV model. In the �rst-price auction, for example, bidders shade their bids, in order to

maximize their expected revenues, conditional on their information about their own value.

One of the most famous results in auction theory is the revenue equivalence theorem (Vickrey

1961, Myerson 1981, Riley and Samuelson 1981). The revenue equivalence theorem states that

given the IPV model, any auction design in which i) the bidder with the highest value wins,

and ii) the bidder with the lowest value gets zero pay-o� yields the same expected revenue

for the seller. All the aforementioned standard auctions are thus revenue-equivalent. There

is voluminous literature on auction theory examining various aspects of single-unit auctions,

whilst relaxing the assumptions of the benchmark model (e.g. Milgrom 2004 provides an

excellent survey of the literature).

When bidders' values are not private or values are a�liated, the revenue equivalence breaks

down. When bidders have private but a�liated values, the high value of one bidder makes

high values of other bidders more likely. Bidders' valuations may also be uncertain, and

expected valuations may depend not only on each bidder's own information but also on

other bidders' information. Suppose that each bidder receives a private signal of the object's

value to her. Bidders' values are interdependent if signals of other bidders also a�ect this

valuation. Bidders' values are common if they all have the same (but uncertain) valuation of

the object. Moreover, signals are a�liated if a high signal of one bidder makes high values

of other bidders' signals more likely. Milgrom and Weber (1982) show that, with a�liated

(and either private, interdependent or common) values, the English auction is better than

the second-price auction in terms of expected revenues. In addition, the Dutch auction and

the �rst-price auction are strategically equivalent and they generate lower expected revenues

than the second-price auction and the English auction.14 This result is related to the winner's

14Milgrom and Weber (1982) also derive many other important results concerning e.g. seller's information,
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curse. Winning the object is bad news, because it reveals that other bidders value the object

less, which implies that the object is of low value for the winner too. Information of the

other bidders is (partly) revealed in the ascending auction, which alleviates the winner's

curse. However, in the �rst-price auction bidders shade their bids more due to the winner's

curse, when values are a�liated.

In many auctions the main objective of the seller is to maximize revenues. An auction design

is said to be optimal if it represents the revenue-maximizing mechanism. According to the

�optimal auctions� literature, the revenue-maximizing assignment rule is based on virtual

valuations and not on true valuations of bidders (Myerson 1981). Suppose that bidder i's

valuation for the object is vi and this is drawn from the distribution Fi (v) with a density

fi (v). Then the virtual valuation (or marginal revenue) of bidder i is

MRi = vi −
1− Fi (v)

fi (v)
. (1.1)

The revenue-maximizing rule may assign the good to a bidder who does not value it most.

Values are said to be regular if the virtual value is monotonically increasing in vi. Then the

revenue-maximizing mechanism is also e�cient. Besides, the seller may increase the expected

revenue by setting a reserve price such that MRi = vs, where vs is the value of the object for

the seller. The revenue-maximizing seller does not assign the object at all if bids are below

the reserve price, even if vi > vs for some i. Thus, the gains from trade will not necessarily

be realized.

Maskin and Riley (2000) relax the assumption of the identical distribution of bidder values

and examine a model of asymmetric bidders. Suppose that there are two bidders: strong

(s) and weak (w). The supports of their value distributions are vi ∈ [βi, αi]. Moreover, the

distribution of the strong bidder's valuation �rst-order stochastically dominates that of the

weak bidder's distribution: Fs (v) > Fw (v) for all v ∈ [βw, αs]. Maskin and Riley show that

in a �rst-price auction, the weak bidder bids more aggressively than the strong bidder with

the same value v. Thus the strong bidder may lose the auction even if she had a greater

valuation. This will not happen in a second-price auction. Furthermore, strong bidders favor

second-price auctions whereas weak bidders favor �rst-price auctions. Which auction design

guarantees greater expected revenues depends on the shapes and supports of the distribution

functions. However, the �rst-price auction may often be more pro�table, while it favors

weak bidders. This is related to the result of revenue-maximizing auctions, which favor weak

bidders with greater marginal revenues (Milgrom 2004, 153).

reserve pricing and entry fees.
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The revenue and e�ciency results may also break down if bidders are able to coordinate

their bids prior to the auction. McAfee and McMillan (1992) is a seminal contribution on

collusion and bidding rings in single-unit auctions. Bidding rings, or cartels, may agree that

no bidder bids more than the reserve price in the auction. After the auction the object is

allocated between the members using some cartel mechanism. However, cartels face several

problems. First, what is the mechanism to divide the spoils of the cartel agreement? Second,

while cartels are illegal, and side payments are in most cases impossible, the cartel agreement

must be self-enforcing. Third, collusion and thus low prices may induce other �rms to enter

the market. Fourth, the regulator has strong incentives to destroy cartels, which makes

cartel agreements harder to sustain. Thus McAfee and McMillan show that weak cartels, i.e.

cartels whose members are unable to make side payments among themselves, cannot do any

better in �rst-price auctions than to randomize the allocation among their members. Any

other allocation method is ex ante weakly dominated for all bidders by random allocation.

However, if side payments are possible, it is possible to attain the optimal cartel agreement:

the member with the highest valuation is assigned the object and new entrants are excluded.

1.3.2 Multi-unit auctions

The two most common multi-unit auction mechanisms are the discriminatory price auction,

also known as the �pay-as-bid� auction, and the uniform price auction.15 In an auction with

�xed supply, bidders submit non-increasing bid functions. The auctioneer aggregates the

bid functions and clears the auction. The clearing price is the price at which the aggregate

demand intersects the supply. All bids above or equal to the clearing price are accepted as

winning bids.16 In a uniform price auction, each bidder pays the market clearing price for

every unit she wins. In a discriminatory price auction, bidders pay their bids for all the

units they have won in the auction. In both uniform price and discriminatory price auctions,

strategic bidders tend to reduce their demand in order to decrease the price and raise the

pro�ts from the auction. This might result in an ine�cient allocation of auctioned goods and

the allocation may di�er between the two auction formats. Hence the weak form of revenue

equivalence does not hold (see Ausubel et al. 2013). In addition, bid-shading a�ects the

revenues collected by the auctioneer.

With private values, the Vickrey-Clarke-Groves mechanism (or the Vickrey auction) pro-

15The discriminatory price auction is often incorrectly thought of as a multi-unit extension of the single-
unit �rst-price auction and the uniform price auction as a multi-unit extension of the single-unit second-price
auction (Ausubel et al. 2013).

16If the clearing price is the �rst rejected bid, then all bids above the clearing price are winning bids. If
there is excess demand at the clearing price, then some rationing rules are needed.
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vides e�cient allocation in multi-unit auctions. Instead of the clearing price, bidders pay

the opportunity cost of each unit they win in a Vickrey auction. Despite its many useful

theoretical properties, the VCG mechanism is rarely used in practice. The reasons why it

is used so rarely include, for instance, possibility of complex bidding strategies, low seller

revenues, non-monotonic payment functions, and vulnerability to collusion or to the use of

multiple bidding identities by a single bidder. Ausubel and Milgrom (2006) and Milgrom

(2004) discuss the reasons in more detail.

The literature on multi-unit auctions generally focuses on a comparison of uniform price

and discriminatory price mechanisms in terms of e�ciency and revenues. The challenge in

theoretical models of these two mechanisms is that analytical equilibrium characterizations

are di�cult or impossible even in the case of symmetric independent private values (e.g.

Hortaçsu 2011, Ausubel et al. 2013). This can be seen from the �rst-order conditions of the

bidder's maximization problem under the Vickrey auction (VA), the uniform price auction

(UPA) and the discriminatory price auction (DPA) (e.g. Hortaçsu 2011, Wilson 1979):

V A : vi (Di (p)) = p, (1.2)

UPA : vi (Di (p)) = p−Di (p)
Hq

Hp

, (1.3)

DPA : vi (Di (p)) = p+
H

Hp

, (1.4)

where vi (qi) is bidder i's marginal value function, Di (p) is the bid function and H (p,Di (p))

is the probability distribution of the market clearing price, i.e. the probability that the

market clearing price p is not higher than the bid for unit Di (p).

In Vickrey auctions bidders are price-takers, whereas in uniform price and discriminatory

price auctions the last terms in the right-hand sides of the �rst order conditions are the

bid-shading factors. In many cases, it is very di�cult to evaluate analytically the probability

distribution H (see Hortaçsu 2011). What is more, there are typically multiple equilibria

in these models (e.g. Klemperer and Meyer 1989, Wang and Zender 2002).17 Hence any

comparison between the uniform and discriminatory price auction formats is more an em-

pirical question (Ausubel et al. 2013). Indeed, there is a growing empirical literature on

multi-unit auctions where di�erent mechanisms are used for selling, for instance, treasury

bills and bonds (e.g. Hortaçsu and McAdams 2010, Kastl 2011) or electricity (e.g. Hortaçsu

17Ollikka and Tukiainen (2013) derive approximations of equilibrium strategies in the uniform price, dis-
criminatory price and Vickrey auction formats. Their model is applied in the setting of central bank liquidity
auctions. To my knowledge, there are no other theoretical models of these auction mechanisms, where bidders'
values are asymmetric and interdependent.
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and Puller 2008, Wolak 2003).

Nowadays, auction mechanisms are used in many emissions trading programs to allocate

emission permits to regulated �rms. The uniform price format is used, for instance, in

the European Union Emissions Trading System (EU ETS), in California's Cap-and-Trade

Program and in the U.S.'s Regional Greenhouse Gas Initiative (RGGI). Thus far, however,

the literature on multi-unit emission permit auctions is relatively scarce (see Cramton and

Kerr 2002, Lopomo et al. 2011).

In this thesis I examine two multi-unit auction designs. I study the Vickrey auction because

of its e�ciency properties. In addition, equilibrium characterizations are possible in the

Vickrey auction even if bidders' values are interdependent. The uniform price auction is

studied because it is the most widely used format in emission permit auctions.

Vickrey auction

Ausubel and Milgrom (2006) provide a good introduction to the Vickrey-Clarke-Groves mech-

anisms. In a private values setting, bidders pay the opportunity cost of their participation

in the mechanism. This is clearly seen in the single-unit second price auction (the Vickrey

auction), where bidders bid their values and the winning bidder pays the second-highest bid.

In pollution permit auctions, as in Montero (2008), the direct VCG mechanism can be inter-

preted as follows. Suppose that Ui (qi) is �rm i's gross value for its pollution qi, i.e. the value

of the avoided abatement costs from zero emissions, and DF (Q) is the damage function of

total pollution Q =
∑n

i=1 qi, where n is the number of polluting �rms. It is assumed that

these functions are non-decreasing in pollution, i.e. U ′i (qi) ≥ 0 and DF ′ (Q) ≥ 0. Each �rm

knows its own value of pollution, but the pollution damage function is common knowledge.

In the direct VCG mechanism, each bidder submits a report of its value function Ûi (qi) to the

regulator. (In the equilibrium bidders are truthful and hence Ûi (qi) = Ui (qi).) Given these

reports, the regulator computes the welfare-maximizing allocation of emissions (permits):

q? ∈ arg max
q

{
n∑
i=1

Ûi (qi)−DF

(
n∑
i=1

qi

)}
.

Next, suppose that

q̄−i ∈ arg max
q−i

{
n∑
j 6=i

Ûj (qj)−DF

(
n∑
j 6=i

qj

)}

is the welfare-maximizing allocation of emissions without �rm i's participation. Suppose, for
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simplicity, that there are unique interior solutions to these problems, i.e. q? = (q?1, . . . , q
?
n)

and q̄−i = (q̄1, . . . , q̄i−1, q̄i+1, . . . , q̄n), where q?i > 0 and q̄j > 0 for all i, j. The VCG payment

of �rm i is

Ri =

[
n∑
j 6=i

Ûj (q̄j)−DF

(
n∑
j 6=i

q̄j

)]
−

[
n∑
j 6=i

Ûj
(
q?j
)
−DF

(
n∑
i=1

q?i

)]
(1.5)

=
n∑
j 6=i

Ûj (q̄j)−
n∑
j 6=i

Ûj
(
q?j
)

︸ ︷︷ ︸
PE

+DF

(
n∑
i=1

q?i

)
−DF

(
n∑
j 6=i

q̄j

)
︸ ︷︷ ︸

PO

.

The VCG payment includes two parts: the pollution externality and the pecuniary external-

ity. The pecuniary externality is de�ned as PE ≡
∑n

j 6=i Ûj (q̄j) −
∑n

j 6=i Ûj
(
q?j
)
. This is the

value of those units to other �rms, which are not assigned them due to �rm i's participation.

The pollution externality is the extra damage of increased pollution due to �rm i's partic-

ipation: PO ≡ DF (
∑n

i=1 q
?
i ) − DF

(∑n
j 6=i q̄j

)
. These externalities are both non-negative,

while q̄j ≥ q?j for all j, but
∑n

i=1 q
?
i ≥

∑n
j 6=i q̄j. The reported function Ûi (qi) does not a�ect

the payment schedule Ri otherwise than determining the allocation q?. Only the reports

submitted by the other �rms directly a�ect the payment schedule of �rm i.

Montero (2008) provides an indirect interpretation of the same mechanism, where �rms

submit bid functions to the regulator. After the auction is cleared, the �rms �rst pay the

clearing price for all the units they have won. In addition, the �rms receive paybacks from

the regulator, which are determined by the bid functions of the other �rms. Due to the

paybacks, the �nal payment of �rm i is equal to (1.5). The VCG payment rule induces �rms

to bid sincerely in the auction in dominant strategies and the allocation is e�cient. Hence the

private values paradigm provides some convenient properties for the VCG mechanism. Due

to the dominant strategy property, �rms do not have to know anything about other �rms'

values. In addition, under some continuity assumptions, the VCG mechanism is the only

mechanism that can implement e�cient outcomes in dominant strategies (Green and La�ont

1979, Holmström 1979). Besides, of the set of e�cient mechanisms, the VCG mechanism is

also the revenue-maximizing mechanism (e.g. Krishna and Perry 2000, Ausubel and Cramton

1999).

When agents' values have common value components, things get more complicated. Jehiel

and Moldovanu (2001) show that with interdependent or common values generally no mech-

anism is able to implement e�cient allocation. However, Dasgupta and Maskin (2000) and

Ausubel and Cramton (2004) show that ex-post e�cient implementation can be achieved if

agents' valuations satisfy certain conditions. Suppose that both the abatement costs and
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pollution damage are uncertain, but prior to the auction �rms receive signals de�ned by a

vector s = (s1, . . . , sn). The signals re�ect the �rms' true valuations Ui (qi). The values

are interdependent if �rm i's expected marginal valuation vi (qi; s) ≡ E
[
dUi(qi)
dqi

∣∣∣ s] depends
on the amount of emissions (or permits) qi and its own signal si, but also on other �rms'

signals s−i = (s1, . . . , si−1, si+1, . . . , sn). Now, the signals should be one-dimensional and the

expected marginal value functions should satisfy the following three assumptions:

1. Continuity: vi (qi; s) is jointly continuous in (s, qi).

2. Value monotonicity: vi (qi; s) is non-negative, and ∂vi(qi;s)
∂si

> 0 and ∂vi(qi;s)
∂qi

≤ 0.

3. Single-crossing: Let s′ denote a signal vector s′ = (s′i, s−i) and s = (si, s−i). Then

vi (qi; s) has a single-crossing property if for all i, j 6= i, qi, qj, s−i and s′i > si:

vi (qi; s) > vj (qj; s)⇒ vi (qi; s
′) > vj (qj; s

′)

and

vi (qi; s
′) < vj (qj; s

′)⇒ vi (qi; s) < vj (qj; s) .

Ausubel and Cramton (2004) prove that truthful bidding is the ex-post equilibrium in the

Vickrey auction with reserve pricing. This holds for any monotonic aggregate quantity rule

Q̄ (s) and associated monotonic e�cient assignment rule qei (s), and for any value function

satisfying continuity, value monotonicity and the single-crossing property. In addition, a

permit resale market does not distort the equilibrium of the Vickrey auction if all the gains

from trade are realized in the resale market.

The generalized Vickrey auction is de�ned as follows (see Ausubel and Cramton 2004). First,

the monotonic e�cient assignment rule qei (s) is de�ned by

vi (q
e
i (s) ; s)


≤ v−i

(
qe−i (s) ; s

)
, if qei (s) = 0

= v−i
(
qe−i (s) ; s

)
, if 0 < qei (s) < Q̄ (s)

≥ v−i
(
qe−i (s) ; s

)
, if qei (s) = Q̄ (s) .

(1.6)

Second, the aggregate quantity rule Q̄ (s) is determined by

Q̄ (s) =

y−1
(
v−i
(
qe−i (s) ; s

)
; s
)
, if qei (s) = 0

y−1 (vi (q
e
i (s) ; s) ; s) , if qei (s) > 0,

(1.7)
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where y (Q; s) ≡ E
[
dDF (Q)
dQ

∣∣∣ s] is the conditional expected marginal damage of total pollution

Q =
∑n

i=1 qi.

Third, the Vickrey payment rule is

Ri (s) =

ˆ qei (s)

0

vi (x; ŝi (s−i, x) , s−i) dx., (1.8)

where signal ŝi is the lowest possible signal for which �rm i would have won unit x given

other bidders' (true) signals s−i:

ŝi (x, s−i) = inf
si
{si| qei (si, s−i) ≥ x} . (1.9)

Thus, the marginal payment for unit x is the expected marginal valuation of �rm i evaluated

at x, if �rm i had received and reported the lowest possible signal ŝi such that x = q̂ei (ŝi, s−i).

Note that by the e�cient assignment rule vi (q̂ei (ŝi, s−i) ; ŝi, s−i) = v−i (q̂
e
i (ŝi, s−i) ; ŝi, s−i),

where q̂ei (ŝi, s−i) is the e�cient allocation given the signal vector ŝ = (ŝi, s−i). The marginal

payment is thus based on valuations conditional on ŝ and not on true signals s. Hence, with

interdependent values the payment is not the full externality cost, in contrast to the pure

private values case. The payment does not include the informational externality of signal si
to other bidders' values and to the damage of pollution.

Ausubel and Cramton (2004) also show that in the case of independent signals and when the

seller has no value for the objects on sale, the Vickrey auction with reserve pricing attains

the upper bound for revenues in a resale-constrained auction program. Thus, when agents

are able to trade units freely after the auction mechanism, the best the auctioneer can do

with respect to e�ciency and revenues is to conduct a Vickrey auction with a reserve price.18

Uniform price auction

In the uniform price auction with the �xed supply and private values19, the �rst-order con-

dition from (1.3) is written as (e.g. Holmberg 2009)

vi (Di (p)) = p− Di (p)

D′−i (p)
, (1.10)

where D′−i (p) ≤ 0 is a price derivative of the aggregate demand of every other bidder at p.

Because the total supply is �xed, D′−i (p) is thus equal to the (negative) price derivative of

18In the �rst two essays of the thesis, bidders' values are interdependent. However, the signals are not
independent and I am not able to derive any results using the revenue equivalence theorem (see Section 1.4).

19This is the setting in the third essay of this thesis.
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the residual supply. There are a number of notable points to be made from the �rst-order

condition (1.10). First, compared to the competitive equilibrium, where bidders act as price-

takers, bid-shading results in a lower clearing price. Second, bidders do not shade their bids

for the �rst units. If the clearing price is so high that Di (p) tends to zero, bidders act as

price-takers, i.e. Di (p) = v−1
i (p). Third, bidders shade their bids more, the relatively larger

they are. Large bidders have larger Di (p) and they face a more elastic residual supply, i.e. a

smaller
∣∣D′−i (p)∣∣, than small bidders. This makes the shading factor higher for large bidders.

Fourth, due to the di�ering shading characteristics, large (small) bidders tend to receive

less (more) units than in the e�cient outcome. Fifth, the number of possible equilibria is

in�nite and even very low price equilibria are possible, as shown by Wilson (1979). However,

underpricing can be reduced by adjusting the inelastic supply after the submission of bids

(Back and Zender 2001, McAdams 2007), making the supply elastic (LiCalzi and Pavan 2005)

or forcing the bid functions to be discrete (Kremer and Nyborg 2004).

Equation (1.10) constitutes a system of n di�erential equations. Solving it analytically is

a very demanding task. Holmberg (2008) derives a unique solution to this problem with a

procurement auction model for when �rms compete with supply functions. However, the

solution requires a set of assumptions: the perfectly inelastic demand is uncertain, there

is a price cap, �rms are symmetric, �rms' production capacities are constrained, and the

capacity constraints bind with positive probability (see also Rudkevich et al. 1998, Anderson

and Philpott 2002, Keloharju et al. 2005). Holmberg (2009), on the other hand, derives

a numerical solution to an otherwise similar model but in the case of asymmetric �rms.

Moreover, assuming a linear model and linear bid schedules simpli�es the model and o�ers

tractable solutions (e.g. Green 1996, Baldick et al. 2004, Ausubel et al. 2013).

The Vickrey auction is shown to be vulnerable to collusion. In a uniform pricing format,

collusion has been studied in laboratory experiments by e.g. Goswami et al. (1996) and

Burtraw et al. (2009). In in�nitely repeated uniform price auctions, Fabra (2003) and

Dechenaux and Kovenock (2007), for instance, examine how perfect collusion can be sustained

among the capacity-constrained �rms.20

1.4 Information

Information plays a key role in pollution regulation in many respects, as we saw in previous

sections. One of the most signi�cant, and perhaps the greatest, current environmental prob-

lem is climate change. Climate change is an extremely complex, multi-level and dynamic

20Fabra (2003) also studies discriminatory price auctions.
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problem associated with great uncertainty. Auction mechanisms are one possible tool to

overcome some of the issues related to the incomplete and asymmetric information in pollu-

tion regulation. However, auction mechanisms with multiple units are relatively complicated

to model, even in the simplest possible setting. In this thesis, I try to simplify the complex

information structure with a simple static representation similar to Vives (2010, 2011)21 In

the following, I explain how the static a�ne linear model re�ects the dynamic problem and

preserves the main informational characteristics of climate change.22 Note, however, that

these models are relatively general and can be applied in numerous types of environmental

and other problems.

The recent report by the Intergovernmental Panel on Climate Change (IPCC)23 a�rms, once

again, that the climate is warming and that global warming is due to increased concentrations

of anthropogenic greenhouse gases in the atmosphere. To what extent high greenhouse gas

concentrations increase global temperatures is very uncertain. The resulting damage caused

by a rise in global temperatures is even more uncertain, whether this is due to rising sea

levels, ocean acidi�cation, extreme weather events, �oods, droughts, changes in ecosystems

or any other possible impact. Tol (2009) surveys the literature on the economic e�ects of

climate change. Estimates of the total e�ects vary from a 2.3% increase in global GDP due to

a 1.0◦C increase in global temperature (Tol 2005) to a 4.8% reduction in global GDP due to

a 3.0◦C temperature increase (Nordhaus 1994). However, the estimated impacts of climate

change vary heavily between regions or economic sectors. In particular, low-income countries

are the most vulnerable to climate change, such as countries in Africa and Asia. If the global

temperature rise is only modest (such as 1.0◦C), the positive e�ects for high-income countries

may o�set the damage for more vulnerable regions. However, it seems more probable that

the temperature rise will be more severe and that we will face notable reductions in global

GDP due to global warming.

The climate change impacts can also be expressed as the net present value of incremental

damage due to a small increase in greenhouse gas emissions. This is the social cost of carbon,

or the marginal damage of pollution. In the studies analyzed by Tol (2009), the average

estimate of the social cost of carbon is approximately US$29 per tonne of CO2 (i.e. $105

per tonne of carbon), but the range of the estimates is very large. Including uncertainty

in the models tends to increase and equity weighting tends to reduce the estimates. Most

importantly, the appropriate discount rate is the major open issue concerning the social cost

21The a�ne linear model is applied in the �rst two essays. This gives a simple interdependent values model.
In the third essay, the �rms' marginal valuations are private.

22The climate change problem is a dynamic stock pollution problem. This is studied e.g. by Hoel and
Karp (2001, 2002), Newell and Pizer (2003), Karp and Zhang (2005, 2012).

23The Working Group I contribution to the IPCC's Fifth Assessment Report (AR5).
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of carbon. (Nordhaus 2011.) In a recent paper, Antho� and Tol (2013) discuss these issues

in more detail.

Nevertheless, I model the marginal (net present) damage of pollution as a linear function:24

MDF (Q; γ) = γ + δQ, (1.11)

where Q can be interpreted as the total greenhouse gas pollution of the next 50 years.

Pollution is uniformly mixed. Thus pollution levels depend only on the total emissions levels;

the locations of emission sources are not relevant. Following Weitzman (1974), the damage

function is linearized around the �rst-best pollution level Q?. This gives the parameters

of the linear function: γ ≡ MDF (Q?) − δQ? and δ ≡ dMDF (Q)
dQ

∣∣∣
Q?
. For simplicity and in

order to guarantee tractable solutions, the slope parameter δ ≥ 0 is assumed to be common

knowledge. Thus the uncertainty of pollution damage is captured by the damage parameter

γ. It is normally distributed with a mean and a variance given by γ ∼ N(γ̄, σ2
γ).

In order to mitigate the damage of global warming, greenhouse gas emissions should be

reduced substantially in coming decades. Depending on the ambition of climate policy, this

requires a considerable technological shift in electricity generation from fossil fuels to carbon-

free technologies such as wind and solar power. Currently, these technologies are more costly

than e.g. coal or gas plants. With appropriate climate policies new carbon-free technologies

will be competitive with conventional technologies. This, however, is a very uncertain process.

The implementation costs and the learning rates for the new technologies, i.e. the reductions

in costs as a function of installed capacity, vary widely inside and between di�erent sets of

renewable energy technologies, among others (see Fischedick et al. 2011).

The �rms I model in the essays can be interpreted as electricity companies. A typical elec-

tricity company has di�erent plants in its generation portfolio. The generating mix contains

di�erent shares of e.g. gas, oil, coal and nuclear power, and renewable energy. In order to

reduce emissions, the company must invest in more e�cient fossil fuel plants or carbon-free

technologies. However, the investment costs and the future maintenance costs for di�erent

technologies are uncertain. This cost uncertainty arises from several factors, such as the de-

velopment and learning e�ects of new technologies, the relative costs of primary fuels, local

weather conditions, economic growth, the demand for electricity or future climate policies.

Nevertheless, the more �rms have to reduce emissions the more they have to pay and the

more valuable emission permits become.

As is well known, technological change is a complex dynamic problem. To avoid complex

24See e.g. Weitzman (2010) for discussion of the speci�cation of the damage function.
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details, I simplify the technological description considerably by making it static. Suppose that

the emission reduction activities and investment decisions of a single �rm are independent of

each other. In that case the net present value of the future emission reduction path is simple

to calculate and the problem can be solved as a static problem. This is, of course, a very

signi�cant simpli�cation.

Hence, in the models, the linearized marginal (net present) value of pollution for �rm i is

written as

ui (qi; θi) = θi − βqi, (1.12)

where the cost parameter θi ≡ ui (q
?
i )− βq?i and the slope parameter β ≡ −dui(qi)

dqi

∣∣∣
q?i

≥ 0 are

de�ned by the �rst-best level of pollution q?i . The slope parameter β is constant and common

knowledge to all the �rms and to the regulator. The uncertainty is, again, captured by the

cost parameter θi. In the models, the private cost parameter θi is initially uncertain to �rm i

(and to other �rms and the regulator). I assume ex-ante symmetry between �rms, and hence

the cost parameters share the same prior distribution, θi ∼ N
(
θ̄, σ2

θ

)
. However, the �rms

are not identical and they have some private information about their reduction costs. The

�rms have di�erent generation portfolios and each �rm thus has a noisy signal of its own cost

parameter, si = θi + εi. The noise terms are identically and independently distributed with

a normal distribution around zero, i.e. εi ∼ N (0, σ2
ε).

The a�ne linear model is assumed to entail two important correlations associated with func-

tions (1.11) and (1.12). First, due to the similar set of units in their generation portfolios

and similar investment possibilities, it is reasonable to assume that emission reduction costs

are correlated between �rms. I assume symmetric correlation between �rms, hence the cost

parameters θi and θi (i 6= j) have a covariance cov [θi, θj] = ρσ2
θ .

Second, the correlation between the emission reduction costs and bene�ts, i.e. the avoided

damage of pollution, has an important role in the models. This statistical dependence is

discussed by Stavins (1996). He states that with uniformly mixed pollution, correlation

between the bene�ts and costs of emission reductions is not likely. However, climate change

is a problem with a very long time horizon. Global warming impacts economic growth as well

as local weather conditions, among other things. The nature of the statistical dependence

between pollution damage and emission reduction costs is not clear. On the one hand, the

relative costs of wind or wave energy, for example, can be reduced locally due to higher wind

speeds. On the other hand, decreased economic growth may a�ect the �nancing costs or

availability and costs of other resources. This may increase the costs of emission reductions

in the long run. In the models, I assume that the possible dependence between environmental

damage and the cost of emissions reductions is the same for all regulated companies. The
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correlation between the damage parameter γ and the average cost parameter θm =
∑n

i=1 θi

is given by cov [γ, θm] = σγθ.

With linear functions and normal random parameters, the conditional expectations of un-

certain variables are a�ne functions. Thus it is easy to calculate the expected value of θi
conditional on si and sm:

E [θi| si, sm] = Aθ̄ +Bsi + Cnsm, (1.13)

where A ≡ A (ξ), B ≡ B (ξ) and C ≡ C (ξ) are functions of the information structure,

ξ ≡ (n, σ2
ε , σ

2
θ , ρ). Respectively, the conditional expectation of the damage parameter is

written as

E [γ| si, sm] = γ̄ + Z
(
nsm − nθ̄

)
, (1.14)

where Z ≡ Z (n, σ2
ε , σ

2
θ , ρ, σγθ). This property is very useful in the analysis. With this

construction, the signals are one-dimensional and the expected marginal value functions

vi (qi; s) = E [θi| si, sm] − βqi satisfy the continuity, value monotonicity and single-crossing

properties. In addition, the aggregate quantity rule de�ned in (1.7) may derive from (1.11)

and (1.14). Thus the a�ne linear model provides a convenient and simple set-up for extending

the analysis of optimal pollution regulation, where regulated �rms have private, yet uncertain,

information about their emission reduction costs.

1.5 Summaries of the essays

1.5.1 Prices vs. quantities when information is incomplete and

asymmetric

I examine the Weitzman (1974) prices versus quantities model by comparing a uniform Piqou-

vian tax and a program of tradeable permits where the permit market is assumed to perform

perfectly. I extend the information structure of Weitzman by allowing �rms to have private

information about their uncertain abatement costs. Moreover, the abatement costs are sym-

metrically correlated between �rms. I also allow the emission reduction bene�ts and costs to

be correlated. The model is linear and the information structure is a�ne. Hence, �rms' values

for pollution are interdependent, but the marginal value functions, i.e. the marginal values of

avoided abatement activities, satisfy the continuity, value monotonicity and single-crossing

properties.
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In the absence of regulation, �rms will not initiate emission reduction activities. Once reg-

ulation is implemented, �rms update their production processes, install new and cleaner

technologies and gradually learn their costs of abatement. Hence, at the outset there are un-

certainties related both to the level of abatement costs and when the true costs are revealed.

However, �rms are better informed than the regulator, which is an important modi�cation

to the Weitzman model. Moreover, the regulator's strategies are constrained in two impor-

tant ways in this paper. First, the regulator can only choose between a uniform tax and

tradeable permits with a �xed total quantity. Second, the initial allocation is the only stage

at which it can in�uence the rules of the regulation. Moreover, there is only one round of

communication between �rms and the regulator and it is also conducted during the process

of the initial allocation.

I propose the following two-stage regulation. The second stage is the standard prices versus

quantities setting, where the regulator implements either a uniform tax or a program of

tradeable permits. However, the information on which the policy parameters, i.e. the level of

tax or the total amount of permits, are based, is gathered in the �rst stage of the regulation.

In the �rst stage, the regulator conducts a generalized Vickrey auction. The main task of

the auction is to collect private information from regulated �rms. In addition, the �rst-stage

auction mechanism serves as an initial allocation method for pollution permits. Permits are

also allocated in the case of the price regulation. Under the tax (or subsidy) regulation, �rms

may buy more permits from the regulator or sell permits back to the regulator at a given

price in the second stage. In the quantity regulation, on the other hand, the emissions cap

is �xed, but �rms may trade permits among themselves.

The main contribution of the paper is to investigate whether the Vickrey pricing rule induces

�rms to bid sincerely in an auction and reveal their information to the regulator when the

auction is followed by either a price or quantity regulation. I show that the Vickrey auction is

incentive compatible when followed by a constant quantity regulation, whenever the positive

correlation between emissions reduction bene�ts and costs is not too high. However, if

constant price regulation is used in the second stage, �rms do not have incentives to bid

sincerely in the Vickrey auction, unless the correlation between emissions reduction bene�ts

and costs is relatively high and negative. This, however, is not expected in most pollution

problem cases, as discussed by Stavins (1996). Hence, if the information is valuable to the

regulator and if the regulator is able to implement an incentive mechanism to collect the

private information of �rms, tradeable permits are a more preferable instrument relative to

taxes when compared with the Weitzman model.

In addition, the solution concept of the generalized Vickrey auction is a Bayes Nash equilib-
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rium. It is thus not possible to implement the e�cient mechanism in dominant strategies,

when bidders' values are interdependent. However, even if the dominant strategy implemen-

tation is not possible, I show that collusion does not distort the outcomes of the ex-post

e�cient allocation and incentive compatibility of the Vickrey auction and thus the results

are in line with Montero (2008).

1.5.2 Learning through one round of communication in regulating

the commons when markets are imperfect

I apply the same information and regulation structure as in the �rst essay. Polluting �rms

are privately better informed than the regulator and �rms' abatement costs are uncertain

but correlated. In addition, the pollution damage is uncertain and can be correlated with

the abatement costs. The regulator implements a two-stage regulation using the generalized

Vickrey auction in the �rst stage.

The essay provides two important extensions. Firstly, for the second-stage regulation, the

regulator implements a quantity regulation, but now the emissions cap is not �xed. Instead,

the supply of pollution permits is dictated by the non-constant permit supply schedules for

each �rm. Secondly, I relax the assumption of a perfect permit market. However, I do not

specify the sources of market imperfections. Imperfections can arise from transaction costs,

asymmetric information between bidders or any other market friction. Taking these frictions

seriously would make the modeling extremely di�cult. Hence I make a rough simpli�cation

and assume that the marginal cost of trading for each �rm is a linear function of the amount

the �rm trades in the permit market with other �rms. This simpli�cation provides a tractable

solution, but it does not change the intuition of the results.

Even if trading between �rms is costly, �rms are able to trade permits with the regulator

without any extra costs in the model. Furthermore, the non-constant permit supply schedules

take into account the frictions of the permit market. If the frictions are modest, the regulation

in the second stage is close to the non-constant permit regulation of Roberts and Spence

(1976) and if the frictions are very great, the optimal second stage regulation is Weitzman's

(1978) non-constant tax regulation.

The main contributions of the essay are two-fold. First, I study the incentive compatibility

conditions of the �rst-stage auction mechanism followed by the permit resale market in the

regulation stage. I show that given the a�ne linear structure of the model, the best strategy

is to bid sincerely in the Vickrey auction if every other �rm bids sincerely, unless the (negative

or positive) correlation between the aggregate abatement costs and damage of pollution is
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relatively high.

Second, I address the role of �rms' private information when the permit market su�ers from

frictions. Given a perfectly competitive permit market, the regulator would be able to obtain

a solution that maximizes the expected social welfare even without the knowledge of �rms'

private information. This is Roberts and Spence's (1976) non-constant permit regulation,

where the regulator is concerned about the aggregate pollution level and thus the aggregate

supply schedule of permits needs to be set equal to the expected marginal damage function.

The permit market solves the asymmetries between �rms. With an imperfect permit market,

the regulator needs to take into account both the aggregate pollution and the distribution

and the initial allocation of permits among regulated �rms. The private information of �rms

is then valuable to the regulator.

1.5.3 Collusion in emission allowance auctions

Assuming that �rms' values are private and their knowledge about their own abatement

costs is complete, I compare two auction designs for allocating the emission allowances: the

Vickrey auction and the uniform price auction. Even though the Vickrey auction is an e�cient

mechanism, it is vulnerable to collusion, as shown by Montero (2008). Collusion reduces the

auction revenues. In contrast, uniform price auctions are not necessarily e�cient. This gives

an interesting set-up for revenue and e�ciency comparisons.

In the model, there are no secondary markets and the market consists of two parts: a

competitive fringe and a number of strategic �rms. The fringe �rms behave as price-takers in

the auction and thus the fringe balances the market. Hence I do not have to consider the low

price equilibria of Wilson (1979). To analyze these two auction designs, I postulate a linear-

quadratic demand function equilibrium with a �xed supply of emission allowances. Moreover,

strategic �rms may collude prior to an auction. Hence I link the auction model to a coalition-

formation game. I apply a partition function approach (e.g. Yi 2003), where the coalition

formation is conducted in two stages. In the �rst stage, strategic �rms decide whether to

participate in coalitions and in the second stage the coalitions play a non-cooperative auction

game against each other. This is the main contribution of the essay.

Montero (2008) shows that Vickrey auctions provide an e�cient allocation of allowances

even if �rms collude. However, all the strategic �rms have strong incentives to form one

big coalition in Vickrey auctions. Thus the revenue loss increases when the market share of

strategic �rms increases.

In contrast, uniform price auctions create a coalition game with positive externalities. The
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more concentrated the coalition structure is, the better o� the coalition outsiders are. In such

games, large coalitions are hard to sustain, because �rms have strong incentives to deviate. I

examine three examples of the coalition formation game in a uniform price auction: a cartel

game with either myopic or farsighted �rms and an open membership game with multiple

coalitions. The stable coalition structure and hence the e�ciency and revenues of uniform

price auctions depend heavily on the coalition game and the structure of the market.
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Chapter 2

Prices vs. quantities when information is

incomplete and asymmetric

Abstract

I extend the Weitzman (1974) model by allowing �rms to have private information about their

uncertain abatement costs. The abatement costs are correlated between �rms. I propose a two-

stage regulation. In the �rst stage, the regulator conducts a generalized Vickrey-Clarke-Groves

(VCG) mechanism. The �rst-stage auction mechanism serves as an initial allocation method of

pollution permits and also collects private information from regulated �rms. In the second stage,

the regulator implements either a constant price or a constant quantity regulation. In the constant

price regulation, a uniform tax rate is set at the level of the expected �rst-best price. The constant

quantity regulation is implemented through a tradeable permit program, where the supply of permits

is �xed at the level of the expected �rst-best aggregate pollution. I show, using an a�ne linear model,

that the VCG mechanism is incentive compatible when followed by the constant quantity regulation,

whenever the positive correlation between emissions reduction bene�ts and costs is not too high.

However, if the constant price regulation is used in the second stage, the information mechanism is

incentive compatible only if the negative correlation between emissions reduction bene�ts and costs

is relatively high.
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2.1 Introduction

When regulating harmful pollution, the relevant information about emission reduction costs

is often in the hands of regulated �rms. Thus, in order to implement e�cient regulation,

the regulatory authority often communicates with regulated �rms to get them to reveal

their private information. However, it is not in the �rms' interest to tell the regulator

their information truthfully, if this is expected to increase their costs. Instead, �rms might

overestimate or underestimate their costs of abatement activities depending on their beliefs

about the type of the future regulation. For instance, if the authority is planning to implement

a uniform tax on pollution, it is in the �rms' interest to underestimate their costs, and thus

have the tax as low as possible. If, on the other hand, the regulator is planning to put up

a program of tradeable emission permits with a �xed supply of permits, �rms may �nd it

pro�table to overestimate their expected costs in order to get the regulator to issue more

permits to the market. Signs of this kind of behavior have been seen, for example, in the �rst

phases of the US Acid Rain Program and the EU Emissions Trading System. In both of these

programs the initial allocation of permits was generous and the resulting equilibrium prices

fell much lower than was initially expected (e.g. McAllister 2009). Hence, if the information

provided by the regulated �rms is biased or incomplete, the regulation is not as e�cient as

it could be.

This paper extends, at least to my knowledge, the previous literature on regulating pollution

in two respects. First, I address the role of �rms' private information in more detail. I

assume that regulated �rms do not have accurate information about their own abatement

costs. Nevertheless, their information is more accurate than that of the regulator. In addition,

the �rms' private information is correlated. Second, I combine the traditional prices versus

quantities regulation model of Weitzman (1974) with the information mechanism. It is of

great interest to �nd a mechanism that gives incentives to regulated �rms to reveal their

private information truthfully to the regulator. Hence, I present the following two-stage

regulation. In the �rst stage, the regulator conducts a generalized Vickrey-Clarke-Groves

(VCG) mechanism, which allocates emission permits initially to regulated �rms. The main

goal of the auction mechanism, however, is to collect the �rms' private information. In

the second stage, the regulator implements either a constant price or a constant quantity

regulation. In the constant price regulation, a uniform tax/subsidy rate is set at the level of

the expected �rst-best price. During the regulation period, �rms are able to trade permits

with the regulator at this price. The constant quantity regulation is implemented through a

tradeable permit program, where the supply of permits is �xed to the level of the expected

�rst-best aggregate pollution. In the quantity regulation, �rms are free to trade permits with
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each other. Even if the �rst-stage information mechanism is ex-post e�cient without any

secondary market, regulated �rms may not be willing to reveal their information truthfully

when the VCG mechanism is followed by the regulation stage. Hence, the main contribution

of this paper is to derive conditions for an incentive compatible VCG mechanism, when it is

followed by either a constant price or a constant quantity regulation. In addition, I show when

�rms' private information is most valuable to the regulator and, thus, when the information

mechanism improves the outcomes of the regulation.

Weitzman (1974) derives a rule for choosing between a constant price and quantity regulation,

when a social planner is �at the decision node where as much information as is feasible to

gather has already been obtained by one means or another and an operational plan must be

decided on the basis of the available current knowledge�. Given that the permit market is

perfect, Weitzman shows that the choice between a price or quantity regulation depends on

the relationship between the slope of the aggregate marginal abatement costs and the slope

of the marginal pollution damage. For example, if the slope of aggregate marginal abatement

costs is greater than the slope of the marginal damage, then the constant price regulation

should be used. In addition, if the marginal abatement costs are correlated with the marginal

pollution damage, then the positive correlation increases the comparative advantage of the

quantity regulation. In this paper, I study the two constant regulations because these are

the two most recommended instruments that are also used in practice.1 For instance, there

is a wide and ongoing debate as to whether to use a tax or an emissions trading system in

climate policy (e.g. Newell and Pizer 2003, Karp and Zhang 2005, Metcalf 2007, Stavins

2007).2

If regulated �rms have more accurate information about the costs of emission reductions

than the regulator has, then the regulator is eager to communicate with the �rms before

1Roberts and Spence (1976), Weitzman (1978), Kennedy et al. (2010) and Yates (2012), for instance,
provide models with non-constant regulatory schemes. In a non-constant tax regulation, the tax rate varies
with the quantity of emissions and in a non-constant quantity regulation the permit supply is de�ned as a
function of price. With a similar information structure to this chapter, I examine in Chapter 3 a two-stage
regulation with a non-constant quantity regulation in the second stage. In addition, in Chapter 3, I relax the
assumption of a perfect permit market.

2The climate change problem is a dynamic stock pollution problem. In a problem of stock pollution,
Newell and Pizer (2003) and Karp and Zhang (2005), for instance, build dynamic models with autocorre-
lated abatement costs. Using estimates of marginal abatement costs, marginal damage and other relevant
parameters in their models, they argue that taxes dominate quota regulation in the climate change problem.
Moreover, in Karp and Zhang (2005), the regulator learns from �rms' reactions in di�erent periods and
adjusts regulation based on the new information (feed-back policy). However, in this paper the model is
static. During one period the regulation is �xed by assumption and the regulation period of this paper can
be interpreted as a single period of a dynamic model. Also the timing of information is di�erent. In the
model of this paper, the regulator is eager to learn the private information of �rms at the beginning of the
regulation period in order to improve the regulation for the same period, whereas in Karp and Zhang (2005)
the new information is used for adjusting the regulation in subsequent periods.
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implementing any regulation. Kwerel (1977) gives an example of a regulatory scheme with

one round of communication between the regulator and the regulated �rms. In Kwerel's

model �rms know their own abatement costs exactly. Kwerel proposes a simple subsidy and

license (permit) scheme, where polluting �rms �rst submit reports on their abatement costs

to the regulator. Based on the �rms' reports, the regulator then allocates pollution licenses

to the �rms and sets the price of a subsidy at which it will buy pack any licenses that are in

excess of the �rms' emissions. Kwerel's scheme implements the �rst-best in Nash equilibrium.

In other words, given that other �rms report their private information truthfully to the

regulator, it is also the best response for each �rm to report truthfully. However, Kwerel's

scheme works only if all licenses are auctioned o� with an uniform-price design and if the

uniform-price auction is competitive (Montero 2008). If licenses are allocated for free, there

are more pro�table equilibrium strategies than those proposed by Kwerel. When using these

pro�table deviation strategies, �rms over-report their demand for licenses to the maximum

extent. Also, if licenses are allocated using a uniform-price auction, bid-shading and the

resulting low-price auction equilibrium provide incentives for over-reporting and make the

regulation a money-making machine for �rms.

Montero (2008) provides an e�cient mechanism for the commons problem by applying the

Vickrey-Clarke-Groves (VCG) pricing rule (Vickrey 1961, Clarke 1971, Groves 1973).3 Mon-

tero examines an indirect implementation of the VCG mechanism by proposing a simple

sealed-bid auction mechanism for emissions permits with endogenous (non-constant) sup-

ply.4 In Montero, each �rm is certain about its abatement costs. In other words, �rms have

pure private values of the emission permits. In a pure private values case, the VCG mech-

anism implements e�cient allocation in dominant strategies. Montero also shows that the

Vickrey auction implements the �rst-best outcome, even if �rms collude and coordinate their

bids in the auction.

I follow the previous literature (e.g. Weitzman 1974, 1978) and linearize the unknown func-

tions around the �rst-best. In addition, I apply the a�ne information structure from Vives

(2010, 2011). The model is thus the symmetric case of Weitzman (1974, 1978). Moreover,

I assume that prior distributions, the number of regulated �rms and the functional forms of

the costs and bene�ts of emission reductions are common knowledge. With the quantity reg-

ulation, I further assume that the second-stage market is perfect. Hence, trading is e�cient,

�rms do not have market power and the market does not su�er from any kind of frictions.

Pollution is assumed to be uniformly mixed.

3The VCG mechanism is a multi-unit extension of a single-unit Vickrey auction. In this paper these are
used as synonyms.

4Dasgupta et al. (1980) propose a tax scheme applying a direct VCG mechanism.
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However, it is important to recognize the two important extensions that I make to the

Weitzman (1974) model. First, I take one step backwards and assume that regulated �rms

have some private information about their own abatement costs. Reducing emissions is

costly for �rms. They have to install new and cleaner technology, modify their production

processes, use more expensive inputs or perhaps even reduce production to some extent.

Above all, polluting �rms have more accurate information about their expected abatement

costs than the regulator. This information is valuable but not available, a priori, to the

regulator.

Second, regulated �rms do not have complete information about their true abatement costs.

Without any regulation, �rms are not willing to reduce their emissions from the business-

as-usual level, and they have only limited understanding of the future costs of emissions

reductions. Once the regulation is implemented and �rms start to invest in new technologies,

�rms gradually learn their true abatement costs. However, the exact timing of the learning

process is not known beforehand. Moreover, if all regulated �rms choose their abatement

technologies from a similar technology set, uncertain costs are correlated between �rms.

Hence, the values that �rms place on emission permits are interdependent. This complicates

the auction mechanism implemented in the �rst stage of the regulation. In Montero (2008),

values are private and the Vickrey auction provides the �rst-best solution. Unfortunately,

with common or interdependent values, the e�ciency property of VCG mechanisms (or any

other mechanism) is not generally sustained (Jehiel and Moldovanu 2001). However, with

suitable conditions, such as when bidders' uncertainty is one-dimensional and marginal values

have single-crossing properties, a generalized Vickrey auction is ex-post e�cient (Dasgupta

and Maskin 2000, Ausubel and Cramton 2004). This holds at least in the absence of a

secondary market for permits.

Furthermore, I allow the uncertain bene�ts and costs of emissions reductions to be correlated

(see also Stavins 1996). The relative magnitude of this correlation determines whether the

Vickrey auction is incentive compatible, when it is followed by one of the two constant

regulations. I show that it is optimal to bid sincerely in a Vickrey auction if every other

bidder is bidding sincerely and if the auction is followed by a constant quantity regulation,

whenever the positive correlation between emissions reduction bene�ts and costs is not too

high. However, using the constant price regulation in the second stage, the Vickrey auction is

incentive compatible only if the negative correlation between aggregate abatement costs and

pollution damage is relatively high. Moreover, if there is no statistical dependence between

the marginal bene�ts and marginal costs of environmental protection, I derive a modi�ed rule

for choosing between the one-stage price regulation (uniform tax without any information

mechanism) and the two-stage quantity regulation (a tradeable emission permit program
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with the Vickrey auction as an initial allocation mechanism). The comparative advantage of

the two-stage quantity regulation increases if the private information of �rms becomes more

accurate, if the correlation between �rms' abatement costs increases and if the regulated

�rms are more heterogeneous. In addition, I show that when the incentive compatibility

conditions are satis�ed, collusive actions do not distort the ex-post e�ciency of the Vickrey

auction.

In Section 2.2, I introduce the two-stage regulation and the a�ne linear model. I solve the

problem backwards. Hence in Section 2.3, I �rst derive the expected deadweight losses of

the constant price regulation and the constant quantity regulation and compare them given

the information of the regulator at the time of implementing the second-stage regulation. I

derive the value of information in di�erent information structures. In Section 2.4, I describe

the Vickrey payment rule of the information stage, and derive the incentive compatibility

conditions of the Vickrey auction. A modi�ed Weitzman rule is introduced in Section 2.5

and Section 2.6 provides a robustness check for collusion. Section 2.7 concludes.

2.2 Model

Consider n ≥ 2 risk-neutral �rms indexed with i = 1, ..., n.5 As a by-product of the

normal production of goods and services, �rms pollute. Pollution is denoted by a vector

q = (q1, . . . , qn) and Q =
∑n

i=1 qi denotes the aggregate pollution. Without any regulation,

the pollution of �rm i is at the business-as-usual level, qbaui . Reducing emissions below the

business-as-usual level is costly for �rms.

Let ACi (zi; θi) denote the abatement costs of �rm i, where zi (qi) = qbaui − qi ≥ 0 is the

amount of abatement and θi is a �rm-speci�c cost parameter. Put the other way round,

the gross value of the avoided abatement costs of �rm i, that is the gross value of pollution,

writes Ui (qi; θi) = ACi
(
qbaui ; θi

)
− ACi (zi (qi) ; θi). Hence the marginal abatement costs, or

the marginal value of the avoided abatement costs, is denoted by U ′i = dUi
dqi

= ui (qi; θi).

The cost parameter θi de�nes the level of the marginal abatement costs of �rm i such that

ui (qi; θi) ≥ ui (qi; θ
′
i) if θi ≥ θ′i for all 0 ≤ qi ≤ qbaui and i. Moreover, it is reasonable to

assume that with closely related industrial �rms, emission reduction technologies are related

and costs are thus correlated. In particular, I assume that cost parameters are correlated

between �rms.
5I relax this assumption later and let there be one cartel with all �rms as members or only one big �rm,

and thus n = 1.
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Furthermore, pollution causes damage to the environment and the damage function is denoted

by DF (Q; γ). The marginal damage function is denoted by DF ′ = dDF
dQ

= MDF (Q; γ)

and γ is a damage parameter such that MDF (Q; γ) ≥ MDF (Q; γ′) if γ ≥ γ′ for all

0 ≤ Q ≤
∑n

i=1 q
bau
i . Pollution is assumed to be uniformly mixed. The standard assumptions

hold, U ′i > 0, U ′′i ≤ 0, and DF ′ > 0, DF ′′ ≥ 0.

The �rst-best solution maximizes the social welfare with respect to the pollution vector q:

max
q
W (q) =

n∑
i=1

Ui (qi; θi)−DF

(
n∑
i=1

qi; γ

)
. (2.1)

Let us assume that this problem has an interior solution denoted by a vector q? = (q?1, . . . , q
?
n)

where 0 < q?i < qbaui for all i and Q? =
∑n

i=1 q
?
i . In the �rst-best, the pollution of each �rm is

at the level where the marginal value of pollution equals the �rst-best price and, in addition,

the �rst-best price equals the value of the marginal damage function:

ui (q
?
i ; θi) = p? = MDF (Q?; γ) .

Unfortunately, the �rst-best solution is unknown due to the uncertain information about

the true damage function and the true emission reduction costs. The cost parameters θ =

(θ1, . . . , θn) are unknown to all at the outset, but each �rm receives a private signal of its own

cost parameter and �rms learn their true abatement costs during the regulation period. In

order to maximize the expected welfare, the regulator implements regulation r. Firms react

to this regulation. Let πi,r (·) denote the pro�t function of �rm i. The pro�t-maximizing

solution of �rm i, after the revelation of θi, is thus denoted by qi,r = arg max πi,r (qi; θi).

Hence, qr = (q1,r, . . . , qn,r) denotes the vector of pro�t maximizing pollution levels and

Qr =
∑n

i=1 qi,r is the total level of pollution. The problem of the regulator is then to

choose a regulation r which maximizes the expected welfare given the reactions of �rms to

the regulation:

max
r
E [W (qr)] = E

[
n∑
i=1

Ui (qi,r; θi)−DF (Qr; γ)

]
(2.2)

s.t.

qi,r = arg max πi,r (qi; θi) .

In the next two sections I �rst describe the two-stage regulation model where the regulator

can communicate with regulated �rms before implementing the actual regulation. This com-

munication is conducted by an information mechanism. Furthermore, I assume that every
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�rm and the regulator know the primitives of the model: the prior distributions of uncertain

variables, the number of regulated �rms and the functional forms of the costs and bene�ts

of emission reductions. In particular, I apply an a�ne linear model, which is also introduced

below.

2.2.1 Two-stage regulation

With the possibility of communication, the model has two stages. In the �rst stage the regu-

lator implements an information mechanism, which aims to reveal �rms' private information

to the regulator. In addition, the �rst-stage mechanism serves as an initial allocation method

for permits. This is done utilizing a generalized Vickrey auction and I denote this stage the

information stage. Before conducting the auction mechanism, the regulator informs all �rms

about the rules of the auction and the regulation period. Then, according to the auction

mechanism, �rms submit reports (bidding schedules) to the regulator. The regulator's ob-

jective is to get �rms bid sincerely in the auction. Thus, the following de�nition is the core

concept in this paper.

De�nition 2.1. The Vickrey auction in the information stage is said to be incentive com-

patible (IC) if bidding sincerely in the auction is the best response to other bidders' strategies

when they too bid sincerely.

After the auction, the regulator allocates pollution permits to �rms and collects the auction

payments from them. The payments and the allocation rule are determined by the �rms'

reports. The auction mechanism is a time-consuming procedure. The regulator is not able

to conduct an auction at any point of time. I thus assume that after an auction there is

a relatively long time period when �rms take di�erent actions: trade inputs and outputs

of production, make decisions about reducing emissions and, most importantly, learn. This

period is the second stage of the model and it is called the regulation period.

Using the information from the �rst stage, the regulator sets up a regulation in the beginning

of the regulation period. If the price regulation is chosen, then the regulator establishes a

uniform tax/subsidy for �rms. The tax (subsidy) speci�es the price at which �rms are able

to buy (sell) emission permits from (to) the regulator during the regulation stage. Hence,

permit transactions are conducted on two occasions. First, �rms have to buy pollution

permits based on their reports after the information stage. Second, �rms may update their

holdings of emissions permits during the regulation period.

Instead, if a quantity regulation is applied in the regulation period, �rms may trade pollution

rights with each other. Firms may need this opportunity when they learn their true abatement
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costs. However, the total amount of permits is �xed after the information mechanism. With

the quantity regulation, I assume that the second-stage market is perfect. The assumption

of perfect competition is a natural �rst step for the resale market. Suppose that the initial

allocation is ex-post e�cient. Then the initial allocation after the information stage is fairly

close to the �rst-best and �rms' ability to use market power is limited. Nevertheless, the

results would change if there were trade frictions in the secondary market. However, I ignore

all market imperfections in the resale market.6

At the end of the regulation period, each �rm is obligated to hold an amount of permits

equalling the emissions it had in the regulation period. I assume that the penalty for being

non-compliant is very high and �rms do not violate the compliance rule on purpose. To

recap, the timing of the regulation is the following.

• t0: All agents (regulated �rms and the regulator) learn the distribution functions of the

uncertain parameters and the functional forms of �rms' abatement costs and pollution

damage. Each �rm receives a noisy signal about its own abatement costs.

• t1: The �rst stage - the information stage. The regulator conducts an auction, in which

emission permits are initially allocated to �rms. The regulator announces both the

rules of the auction mechanism and the rules of the regulation during the regulation

period. In the auction, each �rm i simultaneously submits a demand schedule to the

regulator. The regulator sets the clearing price and the total quantity of permits to

be allocated. Then it distributes permits to �rms and collects auction payments from

�rms. The regulation period starts after the auction.

• t1−t2: The second stage - the regulation stage. In the quantity regulation, the aggregate
supply of permits is �xed at the level of the initial allocation. Firms are, however,

allowed to trade permits with each other. In contrast, if the price regulation is used,

�rms may purchase more permits from the regulator or sell permits back to the regulator

at the announced uniform price, which is set at the level of the �rst-stage auction

clearing price. Firms learn their cost parameters during the regulation period.

• t2: All �rms have learned their cost parameters. The time point t2 is not known to any

�rm or to the regulator at the outset. The true damage of pollution is not revealed.

6In Appendix 2.E, I derive the results of the model when the permit market su�ers from market frictions
and run some numerical simulations. See Chapter 3 for a more general analysis when the permit market is
not perfect.
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2.2.2 A�ne linear model

In the following, I introduce the a�ne linear model and derive the linearized version of the

regulator's problem (2.2). In particular, all the unknown marginal functions are linearized

around the �rst-best (see Weitzman 1974, 1978). In addition, all the random variables are

normally distributed (see Vives 2010, 2011).7 To put it more formally, the a�ne linear model

is de�ned as follows.

De�nition 2.2. The a�ne linear model is de�ned by equations (2.4) - (2.16), where the

distribution functions of the uncertain variables and the functional forms of the abatement

costs and pollution damage are common knowledge and the permit market is perfect.

Each �rm has the following quadratic approximation of its abatement cost function evaluated

around the �rst-best:

Ui (qi; θi) = Ui (q
?
i ; θi) + U ′i (q?i ; θi) (qi − q?i ) +

1

2
U ′′i (q?i ; θi) (qi − q?i )

2 . (2.3)

The linearized marginal value function of �rm i is thus written as

ui (qi; θi) = θi − βqi, (2.4)

where the intercept, i.e. the cost parameter, is θi ≡ U ′i (q?i ; θi) − U ′′i (q?i ; θi) q
?
i > 0 and the

slope β ≡ −U ′′i (q?i ; θi) ≥ 0. The slope parameter β is constant and common knowledge

to all �rms and to the regulator.8 However, the cost parameter θi is initially uncertain to

�rm i (and to other �rms and the regulator). The cost parameters share the same prior

distribution, θi ∼ N
(
θ̄, σ2

θ

)
and these cost parameters are symmetrically correlated between

�rms with a covariance, cov [θi, θj] = ρσ2
θ . The average cost parameter θm = 1

n

n∑
i=1

θi has an

expected value E [θm] = θ̄ and a variance var [θm] = 1
n

(1 + (n− 1) ρ)σ2
θ .

At the outset, each �rm receives a noisy signal of its own cost parameter, si = θi + εi.

The noise terms are i.i.d., with a normal distribution around zero, εi ∼ N (0, σ2
ε). Let

s = (s1, . . . , sn) denote the signal vector and s−i = (s1, . . . , si−1, si+1, . . . , sn) is the signal

vector of every other �rm but �rm i. The average signal is denoted by sm = 1
n

n∑
i=1

si and it

7Using normally distributed random variables is convenient for modeling purposes but lacks reality. The
support of the normal random variable is [−∞,∞]. Thus, given the assumptions of the model, there is a
positive probability that a �rm's marginal value of pollution permits is highly negative and decreasing in the
�rm's pollution. This is not realistic, nor is it realistic that the marginal damage function of pollution is
negative. Hence I assume throughout the paper that all the parameter values of the model are such that all
unrealistic events are highly unprobable, and thus can be ignored.

8The assumption of a constant slope makes the model a bit more easy to solve. The common knowledge
assumption is, however, more restrictive. Without this assumption, the model would not be tractable.
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has an expected value E [sm] = θ̄ and a variance var [sm] = 1
n

(σ2
ε + (1 + (n− 1) ρ)σ2

θ).
9 I

assume that the expected values are interdependent and hence σ2
ε > 0 and 0 < ρ < 1. I do

not consider negative correlation between marginal values.10

Firms update their beliefs about cost parameters given the information they have. In addition

to the �rm's own signal, the clearing price of the �rst-stage auction reveals information

about the signals of other �rms. Indeed, given that the auction mechanism is incentive

compatible (De�nition 2.1) and thus all �rms bid sincerely, then under the a�ne linear model

(De�nition 2.2) the clearing price p is su�cient statistics for sm. This entails that E [θi| sm]

is informationally equivalent to E [θi| p]. Furthermore, due to the symmetric correlation

between �rms' cost parameters, E [θi| s] is informationally equivalent to E [θi| sm], and thus

E [θi| s] = E [θi| sm] = E [θi| p]. I explain this mechanism later. Now, given that �rm i knows

both its own signal si and the average signal sm (or the whole signal vector s, or the clearing

price of the incentive compatible Vickrey auction), then the conditional expected value of θi
writes as (see Appendix 2.A and e.g. DeGroot 1970, Vives 2011)

E [θi| s] = Aθ̄ +Bsi + Cnsm, (2.5)

where11

A =
σ2
ε

σ2
ε + (1 + (n− 1) ρ)σ2

θ

B =
(1− ρ)σ2

θ

σ2
ε + (1− ρ)σ2

θ

C =
ρσ2

θσ
2
ε

(σ2
ε + (1− ρ)σ2

θ) (σ2
ε + (1 + (n− 1) ρ)σ2

θ)
.

The variance of θi conditional on s is, respectively,

var [θi| s] = (B + C)σ2
ε . (2.6)

Furthermore, the conditional expected value and the variance of the average cost parameter

writes as

E [θm| s] = θ̄ + (1− A)
(
sm − θ̄

)
, (2.7)

9Note also that var [sm] = cov [si, sm].
10The model would have independent private values if ρ = 0. The pure common values case is when the

value parameters are perfectly correlated and thus ρ = 1.
11The expected value of θi conditional only on signal si is E [θi| si] =

σ2
ε

σ2
ε+σ

2
θ
θ̄ +

σ2
θ

σ2
ε+σ

2
θ
si. Note also that

A+B + nC = 1 and thus 1−A = B + nC.
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var [θm| s] = A · var [θm] =

(
B

n
+ C

)
σ2
ε . (2.8)

Note that after the revelation of the average signal sm, there would still be some uncertainty

before �rm i learns its true cost parameter θi. The remaining uncertainty of �rm i is εsi =

θi − E [θi| s]. This is a normally distributed random variable with the parameters εsi ∼
N (0, (B + C)σ2

ε) and a covariance, cov
[
εsi , ε

s
j

]
= Cσ2

ε . The distribution of the remaining

aggregate uncertainty, nεsm =
∑n

i=1 ε
s
i , has the parameters nεsm ∼ N (0, (B + nC)nσ2

ε).

Hence (2.4) and (2.5) yield the expected marginal value function conditional on s:

vi (qi; s) = E [ui (qi)| s] = Aθ̄ +Bsi + Cnsm − βqi. (2.9)

Respectively, the second-order approximation of the damage function writes as

DF (Q; γ) = DF (Q?; γ) +DF ′ (Q?; γ) (Q−Q?) +
1

2
DF ′′ (Q?; γ) (Q−Q?)2 . (2.10)

This gives the marginal damage function:

MDF (Q; γ) = γ + δQ, (2.11)

where γ ≡ DF ′ (Q?; γ) − DF ′′ (Q?; γ)Q? and δ ≡ DF ′′ (Q?; γ) ≥ 0. Again, the slope pa-

rameter δ is assumed to be common knowledge. The uncertainty of the damage function is

captured by the damage parameter γ. This is assumed to be a normally distributed random

variable, γ ∼ N(γ̄, σ2
γ). Furthermore, γ is correlated with θm and I denote the covariance by

cov [γ, θm] = σγθ.12 Hence, the expected marginal damage function conditional on the sum

of all signals nsm =
n∑
i=1

si is written as

y (Q; s) = E [MDF (Q)| s] (2.12)

= E [γ| s] + δQ,

where

E [γ| s] = γ̄ + Z
(
nsm − nθ̄

)
, (2.13)

and

Z =
cov [γ, nsm]

var [nsm]
=

σγθ
σ2
ε + (1 + (n− 1) ρ)σ2

θ

. (2.14)

I assume that the true damage parameter is not revealed during the regulation period. The

12The correlation between γ and θm is ργθ =
σγθ√

var[θm]
√
var[γ]

and thus σγθ =
√

1
n (1− ρ+ nρ)σθσγργθ.
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remaining uncertainty related to the damage parameter, after the revelation of signals, is

εsγ = γ − γ̄ − Z
(
nsm − nθ̄

)
and the conditional variance of γ and εsγ is

var [γ| s] = var
[
εsγ
]

= σ2
γ − nZσγθ. (2.15)

Note also that the covariance between the average cost and damage parameters conditional

on signal vector s is simply

cov [γ, θm| s] = Aσγθ. (2.16)

The covariance between abatement costs and pollution damage plays an important role in

this paper. In particular, it de�nes the conditions under which sincere bidding in the infor-

mation stage of the two-stage regulation is incentive compatible. I show later in Proposition

2.1 that given the a�ne linear model, the information mechanism is incentive compatible

when followed by a constant quantity regulation, whenever the positive correlation between

emissions reduction bene�ts and costs is not too high:

σγθ
var [θm]

≤ 1. (2.17)

In particular, (2.17) ensures that the aggregate quantity rule of the �rst-stage auction is

weakly increasing in each bidder's signal. Note that 1 − A − nZ =
var[θm]−σγθ
var[sm]

and thus

(2.17) is equivalent to nZ ≤ 1 − A. Furthermore, in Proposition 2.2, I show that, when a

constant price regulation is used in the second stage, the information mechanism is incentive

compatible only if the negative correlation between emissions reduction bene�ts and costs is

relatively high:
σγθ

var [θm]
≤ −nδ

β
. (2.18)

This is equivalent to nZ ≤ −nδ
β

(1− A).

Finally, given the a�ne linear model, the pollution of �rm i in the �rst-best is q?i = 1
β

(θi − p?)
where p? is the �rst-best price:

p? =
nδθm + βγ

β + nδ
. (2.19)

Furthermore, the welfare-maximizing aggregate pollution level may write

Q? =
n (θm − γ)

β + nδ
. (2.20)

Hence the second-best regulation minimizes the following approximation of the expected
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deadweight loss equation:

min
r
E [DWLr] = E [W (q?)−W (qr)] (2.21)

≈ E

[
n∑
i

θi (q
?
i − qi,r)−

β

2

n∑
i

(
q?2i − q2

i,r

)
− γ (Q? −Qr)−

δ

2

(
Q?2 −Q2

r

)]
.

This problem is equivalent to (2.2). In this paper I consider two alternative constant regula-

tions. The subscript r = p denotes that the regulator implements a uniform tax/subsidy and

thus uses a constant price regulation. On the other hand, if r = q then the constant quantity

regulation through tradeable emission permits is chosen for the regulation period.

2.3 Regulation stage

In this section, I examine Weitzman's (1974) prices vs. quantities comparison under the a�ne

linear model. I compare the constant price and quantity regulations, given the regulator's

information. In particular, let the information parameter I = 0 denote that the regulator

knows only the prior information and thus the regulation is implemented in the absence of

the information mechanism. In contrast, I = s denotes that the regulator has complete

information about the private information of �rms. The problem of the regulator is to

choose r = p, q that minimizes the expected deadweight loss from (2.21) given the responses

of regulated �rms.

2.3.1 Prices

With the price instrument, the regulator sets a tax/subsidy at the level of the expected

�rst-best price. When the regulator knows only the prior information (I = 0), the expected

�rst-best price is

p̄ (0) =
nδθ̄ + βγ̄

β + nδ
. (2.22)

Respectively, if the regulator has complete information about the signal vector (I = s), the

expected �rst-best price writes as

p̄ (s) =
nδθ̄m (s) + βγ̄ (s)

β + nδ
(2.23)

= p̄ (0) +
nδ (1− A) + βnZ

β + nδ

(
sm − θ̄

)
,
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where the last line comes from inserting θ̄m (s) = E [θm| s] from (2.7) and γ̄ (s) = E [γ| s]

from (2.13).

In the beginning of the regulation period, the regulator allocates permits to �rms according

to the expected �rst-best emissions conditional on the regulator's information I. For �rm i

this gives q̄i (I) = 1
β

(
θ̄i (I)− p̄ (I)

)
, where p̄ (I) is the expected �rst-best price from (2.22) or

(2.23), and θ̄i (I) = E [θi| I]. With the a�ne information structure, θ̄i (0) = θ̄ for all �rms,

and θ̄i (s) = E [θi| s] from (2.5). For the average �rm, indexed with m and receiving signal

sm, q̄m (I) = 1
n
Q̄ (I), where Q̄ (I) =

∑n
i=1 q̄i (I) is the total emissions cap in the beginning

of the regulation period. If the regulator has no information about �rms' signals, all �rms

receive an equal amount of permits:

q̄i (0) = q̄ (2.24)

=
θ̄ − γ̄
β + nδ

.

On the other hand, when the regulator knows the signal vector s, it can implement the

ex-post e�cient allocation denoted by qe (s) = (qe1 (s) , . . . , qen (s)) ≡ E [q?| I]:

q̄i (s) = qei (s) (2.25)

= q̄ +

(
1− A− nZ
β + nδ

)(
sm − θ̄

)
︸ ︷︷ ︸

q̄m(s)

+
B

β
(si − sm) .

Firms maximize their pro�ts given the announced tax (or subsidy):

max
qi

πi,p (qi; θi) =

ˆ qi

q̄i(I)

{ui (x; θi)− p̄ (I)} dx. (2.26)

In equilibrium, �rms equate their marginal abatement costs with the tax (or subsidy). In

Appendix 2.B, I derive the outcomes of the price and quantity regulation (see also Weitzman

1974, and Stavins 1996). The pro�t-maximizing solution of �rm i for equilibrium pollution

yields:

qi,p = q̄i (I) +
1

β

(
θi − θ̄i (I)

)
. (2.27)

However, while the price is �xed, the realized aggregate emissions may be over or under the

�rst-best emissions after the revelation of the true abatement costs. The expected deadweight

loss of the price regulation is thus
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E [DWLp (I)] =
1

2

(
1

β
n

+ δ

){(
nδ

β

)2

var [θm| I] + 2

(
nδ

β

)
cov [θm, γ| I] + var [γ| I]

}
.

(2.28)

2.3.2 Quantities

The initial allocation of the quantity regulation is given by the expected �rst-best quantities

from (2.24) or (2.25). During the regulation stage, �rms trade permits with each other. Thus,

when the market is competitive, the maximization problem of �rm i writes as

max
qi

πi,q (qi; θi) =

ˆ qi

q̄i(I)

{ui (x; θi)− pq} dx. (2.29)

In the competitive equilibrium, �rms equate their marginal abatement costs with the permit

market price pq. The equilibrium price is de�ned by the market-clearing rule (see again

Appendix 2.B):

pq = p̄ (I) + θm − θ̄m (I) . (2.30)

However, the total allocation of permits does not adjust to any changes in abatement costs.

The equilibrium pollution of �rm i is

qi,q = q̄i (I) +
1

β

{(
θi − θ̄i (I)

)
−
(
θm − θ̄m (I)

)}
. (2.31)

The expected deadweight loss, due to the non-adjustable total supply of permits, is written

as

E [DWLq (I)] =
1

2

(
1

β
n

+ δ

)
{var [θm| I]− 2cov [θm, γ| I] + var [γ| I]} . (2.32)

2.3.3 Prices vs. quantities

Equations (2.28) and (2.32) give Weitzman's (1974) prices vs. quantities comparison. The

comparative advantage of the constant price regulation over the quantity regulation has an

expected value

∆pq (I) = E [DWLq (I)−DWLp (I)] (2.33)

=
n

2β
var [θm| I]

{
1− nδ

β
− 2

σγθ
var[θm]

}
.
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Equation (2.33) de�nes the Weitzman rule. The constant price regulation should be chosen

if ∆pq (I) > 0 and the constant quantity regulation if ∆pq (I) < 0.

Lemma 2.1. (Weitzman rule) Consider the a�ne linear model with constant price and

quantity regulations. In expected terms, when the abatement costs and pollution damage are

not correlated (σγθ = 0), the constant price regulation is more favorable if the slope of the

aggregate marginal abatement cost function is steeper (less price-elastic) than the marginal

damage function, that is if β
n
> δ. Conversely, if the slope of the marginal damage is steeper,

i.e. if δ > β
n
, then the regulator should use the constant quantity regulation. Furthermore, if

the marginal abatement costs are correlated with the marginal damage of pollution, then the

positive correlation (σγθ > 0) increases the comparative advantage of the constant quantity

regulation (see also Stavins, 1996).

Proof. See (2.33).

The critical value of the ratio between the slopes at which both instruments have equal

expected welfare, i.e. κ ≡
(
nδ
β

: ∆pq = 0
)
, is given by

κ = 1− 2
σγθ

var[θm]
.

It is also easy to see from (2.33) that the regulator should always use quantities if the positive

covariance between abatement costs and emission reduction bene�ts, in relative terms, is

high enough. In particular, this is the case whenever σγθ
var[θm]

> 1
2
and thus ∆pq (I) is then

always non-positive, while nδ
β
≥ 0. Respectively, the constant price regulation should be used

whenever σγθ
var[θm]

< 1
2

(
1− nδ

β

)
. I examine next the role of the regulator's information. The

results are collected in the following lemmas.

Lemma 2.2. Given the a�ne linear model, the choice between constant price and quantity

regulations is independent of the regulator's knowledge of �rms' private information.

Proof. The choice between constant price and quantity regulations depends on the sign of

∆pq (I). Furthermore, sign [∆pq (I)] = sign
[
1− nδ

β
− 2

σγθ
var[θm]

]
. This is independent of the

regulator's information I.�

Lemma 2.3. Given the a�ne linear model, the di�erence between the expected deadweight

losses of constant price and quantity regulations is decreasing in the regulator's information

I if σ2
θ > 0.

Proof. Note that var [θm| s] = A · var [θm]. From (2.33) it is then clear that |∆pq (s)| <
|∆pq (0)| if A < 1. This, on the other hand, is true whenever σ2

θ > 0.�
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Lemma 2.4. Given the a�ne linear model, the private information of �rms is valueless to

the regulator if
σγθ

var[θm]
= 1.

Proof. According to the Weitzman rule (2.33), the regulator should use constant quantity

regulation, whenever σγθ
var[θm]

> 1
2
. Furthermore, from (2.32) we may derive the value of �rms'

private information to the regulator when using a constant quantity regulation:

∆q,I = E [DWLq (0)−DWLq (s)]

=
1

2

(
1

β
n

+ δ

)
(var [θm])2

var [sm]

(
1− σγθ

var [θm]

)2

.

This is zero when σγθ
var[θm]

= 1 > 1
2
.�

Lemma 2.5. Given the a�ne linear model, the private information of �rms is valueless to

the regulator if
σγθ

var[θm]
= −nδ

β
.

Proof. According to the Weitzman rule (2.33) the regulator should use constant price regu-

lation, whenever σγθ
var[θm]

< 1
2

(
1− nδ

β

)
. From (2.28) we may derive the value of �rms' private

information to the regulator when using a constant price regulation:

∆p,I = E [DWLp (0)−DWLp (s)]

=
1

2

(
1

β
n

+ δ

)
(var [θm])2

var [sm]

(
nδ

β
+

σγθ
var [θm]

)2

.

This is zero when σγθ
var[θm]

= −nδ
β
< 1

2

(
1− nδ

β

)
.�

Lemmas 2.4 and 2.5 imply that the aggregate initial allocation Q̄ (I) is independent of infor-

mation I when σγθ = var [θm] and, respectively, the level of uniform tax p̄ (I) is independent

of I when σγθ = −nδ
β
var [θm]. These are also easily derived from (2.23) and (2.25). In

other cases the private information of �rms is valuable to the regulator. However, given the

regulations being considered, the natural next question is: Are there mechanisms that give

incentives for �rms to reveal their private information to the regulator? This is examined in

the next section.

2.4 Information stage

In this section, I examine a mechanism which aims to reveal the private information of �rms

to the regulator. The regulator is then able to implement ex-post e�cient allocation of

emissions permits in the beginning of the regulation stage and thus improve the outcome
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of the chosen regulation. Due to the correlated cost parameters, �rm j's signal a�ects �rm

i's expected marginal value function. Firms' expected values are thus interdependent. In

general, this poses a problem of �nding a mechanism that is able to implement e�cient

allocation (Jehiel and Moldovanu 2001). Hence, in order to achieve ex-post e�ciency in the

auction in the information stage, some additional assumptions about expected marginal value

functions are needed (Dasgupta and Maskin 2000, Ausubel and Cramton 2004). Following

Ausubel and Cramton, the expected marginal value functions should satisfy the following

three assumptions:

1. Continuity: vi (qi; s) is jointly continuous in (s, qi).

2. Value monotonicity: vi (qi; s) is non-negative, and ∂vi(qi;s)
∂si

> 0 and ∂vi(qi;s)
∂qi

≤ 0.

3. Single-crossing: Let s′ denote a signal vector s′ = (s′i, s−i) and s = (si, s−i). Then

vi (qi; s) has a single-crossing property, if for all i, j 6= i, qi, qj, s−i and s′i > si,

vi (qi; s) > vj (qj; s)⇒ vi (qi; s
′) > vj (qj; s

′)

and

vi (qi; s
′) < vj (qj; s

′)⇒ vi (qi; s) < vj (qj; s) .

It is easy to see that (2.9) satis�es all these conditions. Continuity is just a regular assumption

that guarantees an unambiguous solution to the �rst stage auction. Value monotonicity

implies that �rms are naturally ordered with respect to their signals, and that �rms' demand

curves in the Vickrey auction are weakly downward-sloping. Single-crossing means that an

increase in signal si increases �rm i's expected marginal value more than any other �rm's

marginal value for a given quantity. Furthermore, if a �xed quantity is assigned e�ciently

among the �rms in the auction, then �rm i's quantity qi is weakly increasing in signal si.

(Ausubel and Cramton 2004.)

Single-crossing also implies that signal si does not a�ect the natural order of �rms other than

i. This means that if �rms other than i are ordered by a vector

O−i (x; s) ≡ (v1 (x; s) , . . . , vi−1 (x; s) , vi+1 (x; s) , . . . , vn (x; s))

such that vj (x; s) ≥ vk (x; s) for every x and j < k, then signal si does not a�ect the order

of vector O−i (x; s).

Next I �rst describe the generalized VCG mechanism and then I study the incentive compat-

ibility conditions of the VCG mechanism conducted in the information stage, when followed

by the two possible constant regulations.
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2.4.1 Vickrey auction

According to the revelation principle, for each indirect Bayesian mechanism there is a payo�-

equivalent direct revelation mechanism (e.g. Myerson 1981). I �rst describe the direct and

then the indirect interpretation of the same VCG mechanism using the a�ne linear model.

In the direct mechanism, the regulator requests reports from �rms on their payo�-relevant

parameters unknown to the regulator. In our model the reports include signals. The reg-

ulator also informs �rms about the allocation and payment rules, which are determined by

the reports and are the basis of the regulation in the second stage. In their Theorem 1,

Ausubel and Cramton (2004) prove that for any value function satisfying continuity, value

monotonicity and the single-crossing property, the Vickrey auction with reserve pricing has

truthful bidding as an ex-post equilibrium for any monotonic aggregate quantity rule Q̄ (s)

and associated monotonic e�cient assignment rule qei (s).

Firstly, following Ausubel and Cramton (2004), the monotonic e�cient assignment rule qei (s)

is de�ned by

vi (q
e
i (s) ; s)


≤ v−i

(
qe−i (s) ; s

)
, if qei (s) = 0

= v−i
(
qe−i (s) ; s

)
, if 0 < qei (s) < Q̄ (s)

≥ v−i
(
qe−i (s) ; s

)
, if qei (s) = Q̄ (s) .

(2.34)

Secondly, the Vickrey auction is de�ned as a mechanism with the payment rule

Ri (s) =

ˆ qei (s)

0

vi (x; ŝi (s−i, x) , s−i) dx. (2.35)

In (2.35), signal ŝi is the lowest possible signal for which �rm i would have won the unit x

given other bidders' signals s−i:

ŝi (s−i, x) = inf
si
{si| qei (si, s−i) ≥ x} . (2.36)

Thus the marginal payment of unit x is the expected marginal value of �rm i evaluated at x, if

�rm i would have received and reported the lowest possible signal ŝi such that x = qei (ŝi, s−i).

Finally, reserve pricing is de�ned by a monotonic aggregate quantity rule Q̄ (s) which is weakly

increasing in each bidder's signal. Due to this and the single-crossing property, it is possible

to distribute the total quantity e�ciently and each �rm's allocation is weakly increasing in its

signal. Ausubel and Cramton (2004) also assume independent types, which is a requirement

for their general revenue equivalence theorem. With the a�ne information structure, signals

are not independent. However, this is not an issue, while revenue extraction is not a central

question in this model. The primary objective of the regulator is to maximize the expected
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social welfare and not to extract the maximum amount of revenue.13 The analysis of this

paper is based on �ex-post� arguments which do not require any assumptions about the

distribution of signals, as noted also by Ausubel and Cramton (2004). The aggregate quantity

rule Q̄ (s) is determined by

Q̄ (s) =

y−1
(
v−i
(
qe−i (s) ; s

)
; s
)
, if qei (s) = 0

y−1 (vi (q
e
i (s) ; s) ; s) , if qei (s) > 0.

(2.37)

In addition, Ausubel and Cramton (2004) show that even if an equilibrium in an auction

without a resale is typically not an equilibrium in an auction followed by a resale market,

a resale market does not distort the equilibrium of the Vickrey auction. In Theorem 2,

they state that if the Vickrey auction with reserve pricing is followed by any resale process

that is coalitionally-rational against individual bidders, truthful bidding remains the ex-post

equilibrium. Hence, given that other bidders give truthful reports, the sum of i) the expected

payo� in the Vickrey auction when misreporting and, ii) all the gains from trade in the

resale market due to misreporting is lower than the payo� when reporting truthfully in the

�rst place. In this section I examine whether these incentive compatibility conditions of the

information mechanism are satis�ed in the regulation model under consideration.

To give more intuition on the information mechanism I next describe the indirect interpre-

tation of the VCG mechanism introduced in equations (2.34) - (2.37). Moreover, I apply the

a�ne linear model and derive the equilibrium of the auction game. The following auction

mechanism is similar to the indirect VCG mechanism of Montero (2008), who provides more

detailed analysis in a pure private values environment.

In the auction mechanism, instead of signals, �rms report bid functions to the regulator.

The regulator collects all bid schedules, determines the clearing price at which the total

demand equals supply and allocates units to �rms that have submitted winning bids, i.e.

bids above the clearing price. Let Di (p; s
′
i, si) be the bid function of �rm i, when it bids

according to signal s′i when its true signal is si, and where p is the price. Suppose, for a

moment, that every �rm bids sincerely and I thus write Di (p; si, si) ≡ Di (p; si). Later I

13When bidders are not symmetric, the revenue-optimizing seller may either misassign or withhold goods.
According to the �optimal auctions� literature, the revenue-maximizing assignment rule is based on the virtual
values and not on the marginal values of bidders and the rule may assign goods in hands that do not value
them most. Besides, the seller may also increase the expected revenues by setting a reserve price and not
assigning units at all if bids are below the reserve price. Ausubel and Cramton (2004) show that in the case
of independent types and when the seller places no value on the objects on sale, the Vickrey auction with
reserve pricing attains the upper bound for revenues in the resale-constrained auction program. Thus, when
agents are able to trade units freely after the auction mechanism, the best the auctioneer can do with respect
to e�ciency and revenues is to conduct a Vickrey auction with a reserve price.
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will relax this assumption and derive conditions under which it is pro�table for a �rm to

bid sincerely when other �rms are bidding sincerely in a Vickrey auction. This constitutes

an ex-post e�cient Bayes Nash equilibrium. To simplify the analysis, I assume perfectly

divisible units and hence no rationing rules are needed. Total demand in the auction is

D (p; s) = Di (p; si) +D−i (p; s−i) where D−i (p; s−i) is the demand of every other bidder but

bidder i.

The price-elastic supply of pollution permits is simply

QS (p; s) = y−1 (p; s) (2.38)

=
1

δ

(
p− γ̄ − nZ

(
sm − θ̄

))
.

Let pv (s) denote the clearing price in the Vickrey auction. Given that the Vickrey auction

is ex-post e�cient, it must hold from (2.23) that pv (s) = p̄ (s). Then the aggregate quantity

rule Q̄ (s) is weakly increasing in each bidder's signal if

dQ̄ (s)

dsi
=

1

δ

(
δ (1− A) + βZ

β + nδ
− Z

)
≥ 0 ⇔ var [θm] ≥ σγθ.

Note that this gives condition (2.17). Furthermore, the residual supply for bidder i is

RSi (p; s−i) = QS (p; s)−D−i (p; s−i) and the inverse demand function is written Pi (qi; si) ≡
D−1
i (qi; si). In the Vickrey auction, in addition to the clearing price and the allocation of

permits, the regulator determines paybacks for each �rm. Hence, the �nal payment that

�rms have to pay for the units received is not the clearing price. Instead, the share of the

paybacks is de�ned by

αi = 1−
´ qi

0
RS−1

i (x; s−i) dx

RS−1
i (qi; s−i) qi

. (2.39)

While p = RS−1
i (qi; s−i) in the equilibrium, the payment of bidder i in the auction writes as

Ri,v = (1− αi) pqi (2.40)

=

ˆ qi

0

RS−1
i (x; s−i) dx.

Each �rm faces a payment schedule where the marginal payment is given by the inverse

residual supply function. Note that Ri,v depends on signal si only through the end point qi.

Hence the payback mechanism makes bidders bid their expected marginal value functions,

conditional on the aggregate information. That information is incorporated in the clearing

price of the auction. The payback function is determined by the strategies of all other bidders

but bidder i. With sincere bidding, (2.40) is equivalent to (2.35).
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Given that bidders act sincerely and the expected marginal value function is linear in signals

and in quantity qi, �rms utilize linear strategies de�ned by

Di (p; si) = a+ bsi − cp, (2.41)

where a, b and c are some positive constants. The total demand for pollution rights in the

auction may then write

D (p; s) = na+ nbsm − ncp. (2.42)

Knowing the form of the bidding strategies of other agents, �rm i observes the clearing price

p = pv (s) after the auction but before the auction conditions its bidding strategy on nsm.

Furthermore, using (2.38) and (2.42) yields

nsm =

(
1

b+ Z
δ

)(
1

δ

(
p− γ̄ + Znθ̄

)
− na+ ncp

)
. (2.43)

With linear strategies and normal random variables the clearing price is su�cient statistics

for nsm and hence E [θi|s] is informationally equivalent to E [θi|si, p] (Vives 2011). The

conditional expectation of θi, derived in equation (2.5), can then plug into the �rst-order

condition of the considered maximization problem. Note that the expected e�ciency makes

the pro�ts of the second stage random such that the expected value is E [πi,τ (qi, hi; θi)] = 0.

Consider for a moment that this holds. The �rst-order condition when bidding sincerely and

thus in the price-taking equilibrium of the auction is

E [θi|si, p]− βqi − p = 0. (2.44)

Furthermore, plugging equation (2.5) and (2.43) into the �rst-order equation (2.44) gives

qi =
1

β

{
Aθ̄ +Bsi + C

(
1

b+ Z
δ

)(
1

δ

(
p− γ̄ + Znθ̄

)
− na+ ncp

)
− p

}
. (2.45)

Equating this with the strategy Di(p; si) = a + bsi − cp and solving the system, we get the
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linear Bayesian demand function equilibrium strategy, where

a =
1

β

(
1

B + nC + β
δ
Z

){(
AB +

β

δ
(A+ nC)Z

)
θ̄ − β

δ
Cγ̄

}
(2.46)

b =
1

β
B (2.47)

c =
1

β

(
B − β

δ
C + β

δ
Z

B + nC + β
δ
Z

)
. (2.48)

From (2.38) and (2.42), the equilibrium price is then given by

pv (s) =
nδa+ γ̄ + nδbθ̄ + n (δb+ Z)

(
sm − θ̄

)
nδc+ 1

. (2.49)

I show in Appendix 2.C that plugging (2.46) - (2.48) into (2.49) yields pv (s) = p̄ (s) and

Di(pv (s) ; si) = q̄i (s) = qei (s), where p̄ (s) and qei (s) are given by (2.23) and (2.25).

The equilibrium of the Vickrey auction is described in Figure 2.1. It is updated from Figure

2 in Montero (2008). The curves on the left side of Figure 2.1 describe the maximiza-

tion problem of �rm i, whereas the curves on the right side of the �gure the market as a

whole. The curve ŷ (Q; s′i, s−i) plots the equilibrium values of the marginal damage function

y
(
Q̄ (s′i, s−i) ; s′i, s−i

)
for di�erent signal values s′i, where s

′
i is the report of �rm i's signal, i.e.

the signal on which its bid function is based, when its true signal is si. I have assumed that

σγθ > 0 and thus ŷ (Q; s′i, s−i) has a greater slope than y (Q; s).

The Vickrey auction without a resale process is incentive compatible if RS−1
i (qi; s−i) <

vi (qi; s) when qi < q̄i(s) and RS−1
i (qi; s−i) > vi (qi; s) when qi > q̄i(s). This requires that

the slope of the inverse residual supply function denoted by τv is greater than the slope of

the expected marginal value function, i.e. τv > −β, which holds when var [θm] > σγθ (see

equations (2.53) and (2.54) below). The total payment Ri,v (s) is de�ned by the area under

the RS−1
i (qi; s−i) curve. Respectively, �rm i's pro�t in the Vickrey auction given the signal

vector s, denoted by πi,v (s), is the area between the vi (qi; s) and RS−1
i (qi; s−i) curves from

zero to the allocated quantity q̄i(s). The report s′i a�ects the bid function Pi (qi; si) and

the quantity allocated to �rm i, but not the vi (qi; s) or RS−1
i (qi; s−i) functions. If �rm i

submitted a bid function according to the signal s′i < si with Pi (qi; s′i) thus lying below the

sincere bid function Pi (qi; si), the clearing price of the auction would be lower than pv (s) and

�rm i would receive less quantity q̄i (s′) < q̄i (s). Hence, �rm i would lose some of its expected

pro�ts, while vi (qi; s) ≥ RS−1
i (qi; s−i) when qi ∈ [q̄i (s

′) , q̄i (s)]. A similar argument applies

when s′i > si. Then q̄i (s
′) > q̄i (s) but vi (qi; s) ≤ RS−1

i (qi; s−i) when qi ∈ [q̄i (s) , q̄i (s
′)].
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Figure 2.1: Equilibrium of the Vickrey auction.

Thus it is optimal to act sincerely in an auction without a resale market if every other �rm

bid sincerely.

With pure private values, the marginal payment at each quantity in the Vickrey auction

is equal to the opportunity cost of that particular unit. When �rm i participates in the

auction, it increases the total amount of pollution permits and decreases the amount of

pollution rights assigned to other �rms (at least when −nδ
β
≤ σγθ

var[θm]
≤ 1). With pure

private values it is a dominant strategy to bid truthfully in the Vickrey auction and hence

Pi (qi; si) = vi (qi; si) = ui (qi; θi). The total payment Ri,v is then the sum of the pecuniary

externality to other �rms (the area PE) and the pollution externality of increased pollution

(PO). The pecuniary externality is de�ned as the value of those units to other bidders, and

which are not assigned to them due to �rm i's participation. However, with interdependent

values the payment is not the full externality cost, in contrast to the pure private values

case with a similar payment rule (see Montero 2008). The payment does not include the

informational externality (IE) of signal si to other bidders' values and to the damage of

pollution.
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2.4.2 Incentive compatibility

In this section I examine whether sincere bidding in the Vickrey auction is incentive compat-

ible if it is followed by one of the constant regulations. Given that every other �rm is bidding

sincerely in the Vickrey auction, it is in �rm i's interest to bid truthfully if the expected loss

in the Vickrey auction when deviating from a sincere bidding strategy is greater than the

expected bene�t in the regulation stage from a deviation strategy.

Recall that the auction payment Ri,v (s) =
´ q̄i(s)

0
RS−1

i (x; s−i) dx depends only on signal si
through its end point q̄i (s). Let s̃−i = 1

n−1

∑
j 6=i sj denote the average signal of every other

�rm but �rm i, and suppose that other �rms bid sincerely in the auction. Consider for a

moment that �rm i receives a signal ŝi. Then it is easy to derive the clearing price pv as a

function of ŝ = (ŝi, s−i) from (2.49):

pv (ŝ) =
nδa+ γ̄ − nZθ̄ + (n− 1) (δb+ Z) s̃−i

nδc+ 1
+
δb+ Z

nδc+ 1
ŝi, (2.50)

where δb+Z
nδc+1

= δ(1−A)+βZ
β+nδ

. Using this and the equilibrium condition

q̄i (ŝi, s−i) = QS (pv (ŝ) ; ŝi, s−i)−D−i (pv (ŝ) ; s−i) ,

it is easy to see that given sincere bidding:

ŝi (s−i, qi) =

(
ncδ + 1

(ncδ + 1) b− c (bδ + Z)

)
(2.51)

×
{
−a+ cγ̄ − ncZθ̄ + c (n− 1) (bδ + Z) s̃−i

ncδ + 1
+ qi

}
.

Plugging (2.51) into (2.50), the inverse residual supply may write RS−1
i (qi; s−i) = Ωi (s−i) +

τvqi, which is independent of si. However, again using the fact that the inverse residual

supply function goes through the equilibrium point (pv (s) , qei (s)), yields

RS−1
i (qi; s−i) = pv (s) + τv (qi − qei (s)) , (2.52)

where the slope is given by

τv =
δb+ Z

(ncδ + 1) b− c (δb+ Z)
(2.53)

=
βσγθ + nδ · var [θm](

1 + nδ
β

)
(n− 1)B · var [sm] + var [θm]− σγθ

.
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Firstly, note that in the absence of the second stage, sincere bidding in the Vickrey auction

would be incentive compatible ifRS−1
i (qi; s−i) < vi (qi; s) when qi < q̄i (s) andRS−1

i (qi; s−i) >

vi (qi; s) when qi > q̄i (s). This holds while at the auction equilibrium RS−1
i (q̄i (s) ; s−i) =

vi (q̄i (s) ; s) and from (2.53) we get τv ≥ −β, whenever(
1 +

nδ

β

)
(n− 1)B · var [sm] + var [θm]− σγθ ≥ 0. (2.54)

This, on the other hand, is ful�lled whenever the aggregate quantity rule Q̄ (s) is weakly

increasing in each bidder's signal and thus if var [θm] ≥ σγθ, which gives (2.17). Note,

however, that (2.17) is too restrictive and Q̄ (s) needs not to be increasing in si in order for

the Vickrey auction without a resale market to be incentive compatible. For the Vickrey

auction without a second stage to be incentive compatible only requires that the equilibrium

allocation q̄i (s) is increasing in si, which is guaranteed by (2.54). I show in Corollary 2.1

that (2.17) may be relaxed even with the second-stage constant quantity regulation, unless

n = 1.

Furthermore, suppose next that �rm i bids according to signal s′i when its true signal is si, and

I thus denote s′ = (s′i, s−i). Hence, �rm i uses a deviation strategyDi (p; s
′
i, si) = a+bs′i−cp.14

Given �xed s−i, the initial allocation of permits to �rm i reduces to

q̄i (s
′) = a+ bs′i − cpv (s′)

= qei (s)− 1

β

(
(n− 1)B +

1− A− nZ
1 + nδ

β

)
1

n
(si − s′i)

= qei (s)−


(

1 + nδ
β

)
(n− 1)B · var [sm] + var [θm]− σγθ

(β + nδ) var [sm]

 1

n
(si − s′i) .

From this it is easy to see that dq̄i(s
′)

ds′i
> 0 if (2.54) holds. The pro�t in the auction with the

deviation strategy writes πi,v (s′i; si, s−i) and the loss in the Vickrey auction is thus

Li,v (s′i; si, s−i) = πi,v (si; si, s−i)− πi,v (s′i; si, s−i) (2.55)

=

ˆ qei (s)

q̄i(s′)

{
vi (x; s)−RS−1

i (x; s−i)
}
dx.

Respectively, the expected pro�t in the secondary market due to the deviation strategy writes

14Alternatively, �rm i may use any bid function that goes through the point (pv (s′) , q̄i (s′)).
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as

πi,r (s′i; si, s−i) =


´ qi,p(s′)

q̄i(s′)
{vi (x; s)− p̄ (s′)} dx, if r = p´ qi,q(s′)

q̄i(s′)
{vi (x; s)− pq (s′)} dx, if r = q

, (2.56)

where p̄ (s′) is the tax/subsidy under the price regulation, pq (s′) the expected equilibrium

price of the secondary market under the quantity regulation, and qi,p (s′) and qi,q (s′) are

the corresponding expected equilibrium quantities given the initial allocation according to

s′. Due to the ex-post e�ciency of the Vickrey auction, the expected pro�ts of �rm i in the

second stage when bidding sincerely in the auction are zero, πi,r (si; si, s−i) = 0. Hence the

auction mechanism of the �rst stage is incentive compatible if

∆IC = πi,v (si; si, s−i) + πi,r (si; si, s−i)− πi,v (s′i; si, s−i)− πi,r (s′i; si, s−i) (2.57)

= Li,v (s′i; si, s−i)− πi,r (s′i; si, s−i)

≥ 0.

The main results of this paper are provided in the following propositions. Proofs can be

found in Appendix 2.D.

Proposition 2.1. Given the a�ne linear model, the information mechanism of the two-stage

regulation with the constant quantity regulation in the second stage is incentive compatible

whenever
σγθ

var[θm]
≤ 1, if the resale market is coalitionally-rational against individual bidders.

Proof. See Appendix 2.D.

Corollary 2.1. Given the a�ne linear model, the information mechanism without the second

stage, and thus without any resale market, is incentive compatible if

σγθ
var [θm]

≤ 1 +

(
1 +

nδ

β

)
(n− 1)

(
B

B + nC

)
.

Moreover, the information mechanism of the two-stage regulation with the constant quantity

regulation in the second stage and when the resale market is coalitionally-rational against

individual bidders is incentive compatible if

σγθ
var [θm]

≤ 1 +

(
1 +

nδ

β

)
(n− 1)

(
B

B + nC

)(
C

B + C

)
.

Proof. See Appendix 2.D.

Corollary 2.2. Given the a�ne linear model, the information mechanism of the two-stage

regulation with the constant quantity regulation in the second stage is incentive compatible
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if �rms pay (receive) the equilibrium price for all permits they buy (sell) in the second-stage

resale market, and if
σγθ

var[θm]
≤ 1.

Proof. See Appendix 2.D.

Proposition 2.2. Given the a�ne linear model, the information mechanism of the two-stage

regulation with the constant price regulation in the second stage is incentive compatible only

if
σγθ

var[θm]
< −nδ

β
.

Proof. See Appendix 2.D.

2.5 Prices vs. quantities revisited

In this section I combine the results from Sections 2.3 and 2.4. In particular, I compare

four di�erent regulatory instruments: constant price and constant quantity regulations with

and without the Vickrey auction. For simplicity, I denote by the one-stage price regulation

(abbreviated P1) the regulation where a uniform tax is set using only the prior information

and thus without any information mechanism. The two-stage price regulation (P2) denotes

a regulation with a Vickrey auction in the �rst stage and a constant price regulation in

the second stage. One-stage and two-stage quantity regulations (Q1 and Q2) are de�ned

respectively. Hence in the following I discuss which of these four regulations should be used

in di�erent settings. The results are described in Table 2.1 and Figure 2.2.

Table 2.1: Prices vs. quantities with and without a Vickrey auction

Information structure Regulation Details

σγθ
var[θm]

< −nδ
β P2

Equation (2.33),
Proposition 2.2

−nδ
β
<

σγθ
var[θm]

< 1
2

(
1− nδ

β

)
P1 / Q2

Equation (2.58),
Proposition 2.1,
Proposition 2.2

1
2

(
1− nδ

β

)
<

σγθ
var[θm]

< 1 Q2
Equation(2.33),
Proposition 2.1

1 <
σγθ

var[θm]
< 1 +

(
1 + nδ

β

)
(n− 1)

(
B

B+nC

) (
C

B+C

)
Q2 / Q1

Equation (2.33),
Corollary 2.1,
Lemma 2.4

σγθ
var[θm]

> 1 +
(

1 + nδ
β

)
(n− 1)

(
B

B+nC

) (
C

B+C

)
Q1

Equation (2.33),
Corollary 2.1

In Figure 2.2, Q2 marks the area where the inverse residual supply function of the Vickrey

auction for �rm i should lie when the two-stage quantity regulation maximizes the expected
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Figure 2.2: Inverse residual supply function of the Vickrey auction.

welfare from the set of four regulatory alternatives. Moreover, Figure 2.2 shows the following

threshold curves:

L1 ≡
(
RS−1

i (qi; s−i)
∣∣ σγθ
var [θm]

= −nδ
β

)
,

L2 ≡
(
RS−1

i (qi; s−i)
∣∣ σγθ
var [θm]

=
1

2

(
1− nδ

β

))
,

L3 ≡
(
RS−1

i (qi; s−i)
∣∣ σγθ
var [θm]

= 1

)
,

L4 ≡
(
RS−1

i (qi; s−i)
∣∣ σγθ
var [θm]

= 1 +

(
1 +

nδ

β

)
(n− 1)

(
B

B + nC

)(
C

B + C

))
,

L5 ≡
(
RS−1

i (qi; s−i)
∣∣ σγθ
var [θm]

= 1 +

(
1 +

nδ

β

)
(n− 1)

(
B

B + nC

))
.

First, according to theWeitzman rule (2.33) and Proposition 2.1, when 1
2

(
1− nδ

β

)
≤ σγθ

var[θm]
<

1 the regulator should use the two-stage quantity regulation (Q2). This is the case in Figure

2.2 where RS−1
i (qi; s−i) is between curves L2 and L3.
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Second, according to the Weitzman rule (2.33) and Proposition 2.2, the regulator should use

the two-stage price regulation (P2), whenever σγθ
var[θm]

< −nδ
β

. In Figure 2.2, RS−1
i (qi; s−i)

would then lie below the vi (qi; s) and above L1 curves for qi ≤ qei (s). Note also that when
σγθ

var[θm]
= −nδ

β
the private information of �rms is of no value to the regulator (Lemma 2.5).

Third, when σγθ
var[θm]

≥ 1, according to the Weitzman rule (2.33), the regulator should use the

constant quantity regulation. Then RS−1
i (qi; s−i) would have a steeper slope than curve L3 in

Figure 2.2. Even if σγθ
var[θm]

≥ 1, there are some parameter values which yield ∆q,IC > 0 and the

Vickrey auction followed by the constant quantity regulation would be incentive compatible.

These are examined in Corollary 2.1. In Figure 2.2, RS−1
i (qi; s−i) would then lie between

curves L3 and L4. However, then σγθ
var[θm]

≈ 1 and, according to Lemma 2.4, the value of

�rms' private information to the regulator is relatively low. Furthermore, when RS−1
i (qi; s−i)

is between curves L4 and L5, the Vickrey auction is incentive compatible without the second

stage but it is not incentive compatible when followed by the second-stage regulation. Hence,

to conclude, and using a simple rule, whenever σγθ
var[θm]

≥ 1, the regulator should use the one-

stage quantity regulation (Q1).

Fourth, what should the choice be when −nδ
β
≤ σγθ

var[θm]
< 1

2

(
1− nδ

β

)
and when RS−1

i (qi; s−i)

is between L1 and L2. In those cases the Weitzman rule says that the constant price regulation

performs better. On the other hand, the regulator is not able to get �rms to reveal their

private information in the �rst stage if the price regulation is used in the regulation period.

Instead, using the quantity regulation in the second stage provides ex-post e�cient allocation

of permits after the information stage. Thus, the choice between the two-stage quantity

regulation and the one-stage price regulation depends on the modi�ed Weitzman rule:

∆Mod
pq = E [DWLq (s)−DWLp (0)] (2.58)

=
1

2

(
1

β
n

+ δ

)
var [θm]

{
A−

(
nδ

β

)2

−
[
2A+ nZ + 2

(
nδ

β

)]
σγθ

var [θm]

}
.

For example, consider the most likely case where the abatement costs and pollution damage

are not correlated (σγθ = 0). Then the one-stage price regulation is better if ∆Mod
pq > 0 and

thus if
nδ

β
<

√
σ2
ε

σ2
ε + (1 + (n− 1) ρ)σ2

θ

.

Hence, the less noisy the signals are (low σ2
ε), the more correlated abatement costs are between

�rms (high ρ) and the more heterogeneous �rms are (high σ2
θ), the more is gained from the

information stage and the steeper the slope of the aggregate marginal abatement cost function

should be relative to the slope of the marginal damage function, in order for the regulator
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to consider the one-stage constant price regulation. If σ2
ε = 0, �rms have private values and

the Vickrey auction provides the second-best solution. However, if the signals are extremely

noisy (σ2
ε →∞), �rms do not have any better information about their abatement costs than

the regulator has and the model reduces to the original prices vs. quantities comparison,

where the information mechanism provides no additional value to the regulator.

Finally, the role of correlation between the costs and bene�ts of emission reductions does

not change from (2.33) when −nδ
β
≤ σγθ

var[θm]
. The positive correlation (σγθ > 0 ) increases

the comparative advantage of the two-stage quantity regulation. The last term of (2.58),

i.e.
[
2A+ nZ + 2

(
nδ
β

)]
σγθ

var[θm]
, is positive when σγθ > 0, and negative when −nδ

β
var [θm] ≤

σγθ < 0.15

2.6 Collusion

Montero (2008) shows that, with pure private values, the auction mechanism implements the

�rst-best even if �rms collude and thus coordinate their bids in the Vickrey auction. With

pure private values, the VCG mechanism implements the �rst-best in dominant strategies.

With interdependent values, a dominant strategy implementation is not possible. The equi-

librium concept is Bayes Nash equilibrium. However, ex-post e�ciency is attained even if

�rms collude. This is a characteristic which is not supported by the scheme of Kwerel (1977),

for example.

Suppose that all �rms meet before the auction and decide to coordinate their bidding sched-

ules in the auction and their actions in the regulation stage. In addition, they agree on the

procedure for sharing the cartel pro�ts after the auction. Hence the cartel faces both an

external coordination problem of submitting bids in the Vickrey auction but also an internal

mechanism design problem. Montero (2008) explains how the incentive compatible cartel

mechanism induces �rms to reveal their individual demand curves truthfully to the cartel

organization. Moreover, Montero shows that the optimal collusive agreement for a cartel of

m ≤ n �rms is to submit only one serious bid in the Vickrey auction with the true aggregate

demand curve of the cartel. This bid is submitted by one cartel member while all the other

members submit empty demand schedules.

I �rst consider the external coordination problem with interdependent values and assume that

the cartel members can agree on the e�cient cartel mechanism after the auction. Hence, if

there is only one cartel with all �rms as members, with the a�ne linear model this means

15This is clear while
[
2A+ nZ + 2

(
nδ
β

)]
σγθ

var[θm]

∣∣∣
σγθ=−nδβ var[θm]

= −
[
2A+ nδ

β (1 +A)
]
nδ
β < 0.
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that the serious bid is based on the average signal. Next I show, using the equations of

the direct VCG mechanism (2.34) - (2.37), why a bid function based on the sincere report

s′m = sm is optimal for the cartel.

After all �rms have shared their private information sincerely inside the cartel, the aggregate

expected marginal value function, and thus the expected marginal value function of the cartel

writes as

vc (Q; sm) = θ̄ + (1− A)
(
sm − θ̄

)
− β

n
Q. (2.59)

Consider �rst the information mechanism without any second-stage regulation. Suppose that

the bid function the cartel submits in the Vickrey auction is based on signal s′m when the true

average signal is sm. Hence, without any other �rm, the inverse bid function of the cartel is

Pc (Q; s′m, sm) = θ̄ + (1− A)
(
s′m − θ̄

)
− β

n
Q. (2.60)

The regulator assumes that this is the sincere bid. Hence from (2.37), the aggregate quantity

rule writes as

Q̄ (s′m) = y−1 (Pc (Q; s′m, sm) ; s′m) (2.61)

=
θ̄ − γ̄ + (1− A− nZ)

(
s′m − θ̄

)
δ + β

n

.

Note that taking an inverse of the aggregate quantity rule yields the lowest possible signal

ŝm, which gives a quantity Q to the cartel:

ŝm (Q) = θ̄ +

(
γ̄ − θ̄

1− A− nZ

)
+

(
δ + β

n

1− A− nZ

)
Q. (2.62)

From (2.35) we may derive the Vickrey payment of the cartel with a report s′m:

Rc,v (s′m) =

ˆ Q̄(s′m)

0

vc (X; ŝm (X)) dX (2.63)

=

ˆ Q̄(s′m)

0

{
θ̄ + (1− A)

(
ŝm (X)− θ̄

)
− β

n
X

}
dX.

Hence the cartel payo� in the Vickrey auction with a report s′m, when the true average signal
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is sm, writes as

πc,v (s′m; sm) =

ˆ Q̄(s′m)

0

vc (X; sm)− vc (X; ŝm (X)) dX (2.64)

= (1− A)

ˆ Q̄(s′m)

0

(sm − ŝm (X)) dX.

By de�nition sm = ŝm
(
Q̄ (sm)

)
. If 1−A−nZ > 0 and thus σγθ

var[θm]
< 1, the aggregate quantity

is increasing in report s′m. Then sm > ŝm
(
Q̄ (s′m)

)
for all s′m < sm and sm < ŝm

(
Q̄ (s′m)

)
for

all s′m > sm. It is then clear that the sincere report s′m = sm maximizes the cartel pro�ts

πc,v (s′m; sm).

From the regulator's perspective there is only one �rm, and thus there is no need for the

second-stage permit market if the quantity regulation is chosen. If the cartel can agree on

the e�cient allocation, the Vickrey auction provides ex-post e�cient allocation, even if �rms

collude.

Instead, with a constant price regulation, the regulator implements a tax/subsidy rate

p̄ (s′m) = Pc
(
Q̄ (s′m) ; s′m, sm

)
for the regulation period. Note that the inverse (residual)

supply for the cartel may write

RS−1
c (Q) = y (Q; ŝm (Q)) = vc (Q; ŝm (Q)) (2.65)

=
(1− A) γ̄ − nZθ̄

1− A− nZ
+

(
βnZ + nδ (1− A)

1− A− nZ

)
︸ ︷︷ ︸

≡τRS

1

n
Q,

where τRS is the optimal slope of the Roberts and Spence (1976) non-constant quantity

regulation with a perfect permit market (see Chapter 3). Thus, if −nδ
β
>

σγθ
var[θm]

> 1,

the inverse supply schedule is an increasing function and deviating from sincere bidding is

pro�table. Giving a report s′m < sm decreases the initial allocation of permits but also the

second-stage tax. After the auction the cartel can buy permits from the regulator at a lower

rate than in the Vickrey auction. Respectively, with a report s′m > sm the cartel receives

too many permits in the auction compared to the e�cient allocation, but it can sell permits

back to the regulator at a rate exceeding the Vickrey price. Hence a deviation strategy

Pc (Q; s′m, sm) is pro�table to the cartel. In the case of a second-stage price regulation,

sincere bidding is incentive compatible for the cartel only if σγθ
var[θm]

≤ −nδ
β
, and thus when

τRS ≤ 0 (Proposition 2.2).

Finally, there must be a optimal cartel mechanism if a quantity regulation is chosen for the

second stage and if τv > 0 and thus if −nδ
β
>

σγθ
var[θm]

> 1. The intuition is clear. Then the
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average price of permits in the Vickrey auction is decreasing in bidder size. If all �rms join

one big cartel, i.e. a grand coalition, the total Vickrey payo� of the cartel is greater than the

cumulative payo�s of individual �rms when participating in the auction individually. The

di�erence between these two gives the cartel pro�ts. The cartel mechanism must be designed

such that each member receives (in expectation) an equal number of permits to what it would

have obtained individually after a Vickrey auction without a cartel agreement. In addition,

cartel members can agree on how to share the cartel pro�ts such that each member's cartel

payo� in the auction is the sum of its share of the cartel pro�ts and the individual auction

pro�ts that it would have received if all �rms had participated in the auction individually.

This makes each member better o� when joining a cartel and reporting sincerely inside the

cartel (see Montero 2008). However, when σγθ
var[θm]

< −nδ
β
the inverse residual supply functions

are decreasing (τv < 0) and the average price of permits in the Vickrey auction is increasing

in bidder size. Thus collusive actions are then not pro�table to �rms.

To conclude, when −nδ
β
>

σγθ
var[θm]

> 1, �rms are able to agree on the cartel mechanism, given

that the second-stage regulation is based on quantities. Even if �rms coordinate their bids

in the Vickrey auction, the aggregate allocation is at the ex-post optimal level. Furthermore,

if the cartel mechanism is e�cient, the outcome after the Vickrey auction is also ex-post

e�cient. On the other hand, when σγθ
var[θm]

< −nδ
β
, �rms are better o� when they participate

in the Vickrey auction individually. Thus possible collusive actions do not distort the ex-post

e�cient properties of the Vickrey auction.

2.7 Conclusions

This paper considers a two-stage regulation for regulating pollution. The analysis extends

the Weitzman (1974) prices vs. quantities model to an environment where �rms are better

informed about their abatement costs than the regulator. Thus, the private information

of �rms is valuable to the regulator when designing environmental policy. However, �rms

themselves do not know the abatement costs exactly. Also, abatement costs are correlated

between �rms, which makes the model one of interdependent values. In the �rst stage the

regulator conducts an auction mechanism to allocate emission permits to regulated �rms.

Applying the Vickrey pricing rule, the initial allocation is ex-post e�cient, conditional on

sincere bidding being incentive compatibile. During the actual regulation stage two constant

regulations are considered.

With a constant price regulation a uniform price is set at the level of the expected �rst-best

price. During the regulation stage, �rms are able to update their emissions permit assets by
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trading permits with the regulator at a prede�ned price. At the end of the regulation period,

�rms' permit accounts must contain a number of permits equal to their emissions in the

regulation period. Hence the marginal cost of abatement is �xed after the information stage,

but emissions vary. With a constant quantity regulation, the aggregate supply of permits is

�xed, but �rms are able to trade permits with each other after the initial allocation. However,

the equilibrium price is uncertain when implementing the regulation.

Knowing these features, regulated �rms have limited incentives to share their information

sincerely with the regulator. If �rms may in�uence the price that they have to pay for permits,

they certainly will try to in�uence it, if this is expected to be pro�table for them. Hence

�nding an incentive mechanism which induces �rms to report their information sincerely to

the regulator is of great importance.

I have shown that with a constant quantity regulation the generalized Vickrey auction im-

plements the ex-post e�cient allocation of permits and thus incentivizes �rms to report their

private signals sincerely to the regulator. This is not the case, only if the positive correlation

between pollution damage and abatement costs is high. Moreover, the mechanism remains

ex-post e�cient even if �rms coordinate their bids in the auction. With the constant price

regulation, on the other hand, the truth-telling property of the Vickrey auction is not sus-

tained. Firms' ability to in�uence the second-stage tax is too attractive. Only if the expected

price is decreasing in the �rms' reports, and thus when the pollution damage and abatement

costs are highly correlated with a negative sign, is the Vickrey auction incentive compatible.

Then lying and colluding in the Vickrey auction causes harm for an individual �rm, if all

other �rms are sincere.
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Appendices

2.A Conditional expectation of the value parameter θi

According to the information structure introduced in Section 2.2, consider the following

multivariate normal random variable Xi = (X1, X2.1, X2.2) = (θi, si, sm) with a mean vector

µ =

 µ1

µ2.1

µ2.2

 =

 E [θi]

E [si]

E [sm]

 =

 θ̄

θ̄

θ̄

 ,
and a covariance matrix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where

Σ11 = var [θi] = σ2
θ

Σ12 = ΣT
21 =

[
cov [θi, si]

cov [θi, sm]

]T
=

[
σ2
θ

1
n

(σ2
θ + (n− 1) ρσ2

θ)

]T
≡

[
δ1

δ2

]T

Σ22 =

[
var [si] cov [si, sm]

cov [si, sm] var [sm]

]

=

[
σ2
θ + σ2

ε
1
n

(σ2
θ + σ2

ε + (n− 1) ρσ2
θ)

1
n

(σ2
θ + σ2

ε + (n− 1) ρσ2
θ)

1
n

(σ2
θ + σ2

ε + (n− 1) ρσ2
θ)

]

≡

[
∆11 ∆12

∆21 ∆22

]
.

The inverse of Σ22 is

Σ−1
22 =

1

det (Σ22)

[
det (∆22) − det (∆21)

− det (∆12) det (∆11)

]
=

1

∆11∆22 −∆12∆21

[
∆22 −∆21

−∆12 ∆11

]
.

The conditional distribution of the random variable (θi|si, sm) has an expected value (DeG-
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root 1970)

E [θi|si, sm] = µ1 + Σ12Σ−1
22

[
si − µ2.1

sm − µ2.2

]

=

(
1− δ1∆22 − δ2∆12 + δ2∆11 − δ1∆21

∆11∆22 −∆12∆21

)
θ̄

+
δ1∆22 − δ2∆12

∆11∆22 −∆12∆21

si

+
δ2∆11 − δ1∆21

∆11∆22 −∆12∆21

sm,

where

∆11∆22 −∆12∆21 =
(n− 1)

n2

(
σ2
θ + σ2

ε + (n− 1) ρσ2
θ

) (
σ2
θ + σ2

ε − ρσ2
θ

)
,

δ1∆22 − δ2∆12 =
(n− 1)

n2
(1− ρ)σ2

θ

(
σ2
θ + σ2

ε + (n− 1) ρσ2
θ

)
,

δ2∆11 − δ1∆21 =
(n− 1)

n2
nρσ2

θσ
2
ε .

Using these, and after some calculations, the expected value of θi conditional on the signal

vector s can be written as

E [θi|si, sm] = Aθ̄ +Bsi + Cnsm,

where,

A =
σ2
ε

σ2
ε + (1− ρ+ nρ)σ2

θ

B =
(1− ρ)σ2

θ

σ2
ε + (1− ρ)σ2

θ

C =
ρσ2

θσ
2
ε

(σ2
ε + (1− ρ+ nρ)σ2

θ) (σ2
ε + (1− ρ)σ2

θ)
.
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Moreover, the conditional variance is

var [θi|si, sm] = Σ11 − Σ12Σ−1
22 Σ21

= Σ11 − δ1
δ1∆22 − δ2∆21

∆11∆22 −∆12∆21

− δ2
δ2∆11 − δ1∆12

∆11∆22 −∆12∆21

= σ2
θ − σ2

θB − (1 + (n− 1) ρ)σ2
θC

= σ2
θ (1−B) (1− ρ+ ρA)

= σ2
θ (1−B) (1− ρ) + σ2

θ (1−B) ρA

= (B + C)σ2
ε .

Furthermore, let the remaining uncertainty be denoted by εsi = θi − E [θi|si, sm]. It is a

normal random variable with zero expected value and a variance var [εsi ] = var [θi|si, sm].

Furthermore, the covariance between the remaining uncertainties may write

cov
[
εsi , ε

s
j

]
= E

[{(
θi − θ̄

)
−B

(
si − θ̄

)
− Cn

(
sm − θ̄

)}
×
{(
θj − θ̄

)
−B

(
sj − θ̄

)
− Cn

(
sm − θ̄

)}]
= E

[(
θi − θ̄

) (
θj − θ̄

)
+B2

(
si − θ̄

) (
sj − θ̄

)
+ C2n2

(
sm − θ̄

)]
−2E

[
B
(
θi − θ̄

) (
sj − θ̄

)
+ Cn

(
θi − θ̄

) (
sm − θ̄

)
−BCn

(
si − θ̄

) (
sm − θ̄

)]
= ρσ2

θ +B2ρσ2
θ + C2n2 · var [sm]− 2Bρσ2

θ − 2C · var [θm] + 2BCn · var [sm]

= var [εsi ]− (1−B)2 σ2
θ (1− ρ)−B2σ2

ε

= var [εsi ]−Bσ2
ε

= Cσ2
ε .

The aggregate uncertainty is given by (note that B + nC = 1− A = var[θm]
var[sm]

)

nεsm =
n∑
i=1

εsi =
(
θm − θ̄

)
− (1− A)

(
sm − θ̄

)
.

It has a normal distribution with zero expected value and a variance

var [nεsm] = E
[((

θm − θ̄
)
− (1− A)

(
sm − θ̄

))2
]

= E
[(
θm − θ̄

)2
+ (1− A)2 (sm − θ̄)2 − 2 (1− A)

(
θm − θ̄

) (
sm − θ̄

)]
= var [θm] + (1− A)2 var [sm]− 2 (1− A) cov [θm, sm]

= A2var [θm] + (1− A)2 var [εm]

= (1− A)nσ2
ε .
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The damage parameter γ is assumed to be a normally distributed random variable, γ ∼
N(γ̄, σ2

γ). Furthermore, the damage and abatement costs are correlated and the covariance

between γ and θm is denoted by cov [γ, θm] = σγθ. The expected damage parameter condi-

tional on the sum of all signals, nsm =
n∑
i=1

si, writes as

E [γ| sm] = γ̄ + Z
(
nsm − nθ̄

)
,

where

Z =
cov [γ, nsm]

var [nsm]
=

σγθ
σ2
ε + (1 + (n− 1) ρ)σ2

θ

.

The remaining uncertainty related to the damage parameter γ is thus εsγ = γ−γ̄−Z
(
nsm − nθ̄

)
and the conditional variance of γ is

var [γ| s] = E
[(
εsγ
)2
]

= E
[
(γ − γ̄)2 + (nZ)2 (sm − θ̄)2 − 2nZ (γ − γ̄)

(
θm − θ̄ + εm

)]
= σ2

γ + (nZ)2 var [sm]− 2nZσγθ

= σ2
γ − nZσγθ.

The covariance between the average cost and bene�t parameters of emissions reductions,

conditional on the signal vector s, is simply

cov [γ, θm| s] = E
[(
A
(
θm − θ̄

)
− (1− A) εm

) (
(γ − γ̄)− nZ

(
θm − θ̄

)
− nZεm

)]
= E

[
A
(
θm − θ̄

)
(γ − γ̄)− AnZ

(
θm − θ̄

)2
+ (1− A)nZε2

m

]
+E

[
− (1− A) (γ − γ̄) εm + (1− A)nZ

(
θm − θ̄

)
εm − AnZ

(
θm − θ̄

)
εm
]︸ ︷︷ ︸

=0

= Aσγθ − nZA · var [θm] + (1− A)nZ · var [εm]

= Aσγθ.

2.B Regulation stage - prices vs. quantities

In order to derive the prices vs. quantities comparison (Weitzman 1974), I utilize a general

non-constant regulation model. Constant price and quantity regulations are the two extremes

of this general model (see also Weitzman 1978). With a non-constant regulation, the supply

of permits for each �rm in the regulation stage is given by a linear permit schedule:

Ti (qi; I) = p̄ (I) + τ (qi − q̄i(I)) , (2.66)
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where p̄ (I) = E [p?| I] and q̄i(I) = E [q?i | I] are the expected �rst-best outcomes conditional

on information I and τ is the slope of the permit supply schedules. Due to the model being

symmetric, i.e. constant β and symmetric correlation of abatement costs ρ, the slope τ is the

same for each �rm. Then, in the beginning of the regulation period, the regulator allocates

pollution permits to �rms according to q̄ (I) = (q̄1 (I) , ...., q̄n (I)). However, each �rm may

purchase (or sell back) permits from (to) the regulator according to the price schedule (2.66).

In addition, �rms are free to trade permits with each other in the secondary market.

The two alternative constant regulations may derive from (2.66) in the following way. Using

τ = 0, the permit supply schedule reduces to the constant tax (or subsidy) Ti (qi; I) = p̄ (I).

Also, this de�nes the equilibrium price of the secondary market and �rms have no incentives

to trade permits with each other. On the other hand, if τ →∞, the regulation is a constant

quantity regulation where the aggregate supply of permits is �xed at Q̄ (I) =
∑n

i=1 q̄i (I).

Equation (2.66) then only de�nes the initial allocation of permits. I �rst derive the solution

with a general model and then describe the solution with the two regulatory extremes: a

constant price regulation (τ = 0) and a constant quantity regulation (τ →∞).

With the non-constant regulation model, the net purchases of �rm i from the regulator,

denoted by hi, is a sum of the initial allocation q̄i(I) and transactions with the regulator

in the regulation period. Then the amount of trading in the permit markets is simply

∆qi = |qi − hi| ≥ 0. Firm i buys permits in the resale market if qi > hi and sells permits if

hi > qi.

The problem of the regulator is to choose the τ that minimizes the expected deadweight loss

from (2.21) given the responses of regulated �rms. Firm i maximizes its pro�ts with respect

to pollution qi and purchases from the regulator hi given the supply schedule Ti (qi; I):

max
qi,hi

πi,τ (qi, hi; θi) =

ˆ qi

q̄i(I)

ui (x; θi) dx−
ˆ hi

q̄i(I)

Ti (x; I) dx (2.67)

+pτ∆qi
{
1{hi>qi} − 1{qi>hi}

}
.

In (2.67), pτ is the equilibrium price of the secondary market and 1{·} is an indicator function

with the value 1, if its argument is true, and otherwise 0. The �rst-order condition with

respect to pollution is given by

0 = ui (qi; θi) + pτ
d (hi − qi)

dqi
1{hi>qi} − pτ

d (qi − hi)
dqi

1{qi>hi} (2.68)

= ui (qi; θi)− pτ ,
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and with respect to permit purchases from the regulator by

0 = −Ti (hi; I) + pτ
d (hi − qi)

dhi
1{hi>qi} − pτ

d (qi − hi)
dhi

1{qi>hi} (2.69)

= −Ti (hi; I) + pτ .

Let qi,τ and hi,τ denote the pro�t-maximizing pollution level and purchases from the regulator

of �rm i given τ . The �rst-order conditions imply that �rms equate their marginal value

functions with the marginal costs of purchasing and hence from (2.68) and (2.69):

τhi,τ + βqi,τ = (β + τ) q̄i (I) +
(
θi − θ̄i (I)

)
. (2.70)

Further, market clearing implies that
∑n

i=1 hi,τ =
∑n

i=1 qi,τ = Qτ and summing equations

(2.70) from 1 to n gives the total level of pollution

Qτ = Q̄ (I) +
n
(
θm − θ̄m (I)

)
β + τ

. (2.71)

For the average �rm we get

qm,τ = hm,τ = q̄m (I) +
θm − θ̄m (I)

β + τ
. (2.72)

Plugging this into the �rst-order condition gives the equilibrium price:

pτ = p̄ (I) +

(
τ

β + τ

)(
θm − θ̄m (I)

)
. (2.73)

Moreover, �rm i's equilibrium outcomes may derive from (2.68), (2.69), (2.70) and (2.73):

qi,τ = q̄i (I) +
1

β

{(
θi − θ̄i (I)

)
−
(

τ

β + τ

)(
θm − θ̄m (I)

)}
, (2.74)

hi,τ = q̄i (I) +

(
1

β + τ

)(
θm − θ̄m (I)

)
. (2.75)

Plugging (2.74) into the deadweight loss equation (2.21) yields, after a few lines of simple
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calculations,

DWLτ (I) =
1

2

(
1

β
n

+ δ

){(
nδ − τ
β + τ

)2 (
θm − θ̄m (I)

)2
+ (γ − γ̄ (I))2

}
(2.76)

+

(
1

β
n

+ δ

)(
nδ − τ
β + τ

)(
θm − θ̄m (I)

)
(γ − γ̄ (I)) ,

and thus the expected value of (2.76) is

E [DWLτ (I)] =
1

2

(
1

β
n

+ δ

){(
nδ − τ
β + τ

)2

var [θm| I] + var [γ| I]

}
(2.77)

+

(
1

β
n

+ δ

)(
nδ − τ
β + τ

)
cov [θm, γ| I] .

Recall that the regulator chooses only between constant regulations.16 If the regulator uses a

constant pigovian tax/subsidy, i.e. τ = 0 and thus Ti (qi; I) = p̄ (I), the expected deadweight

loss writes as

E [DWLp (I)] = E [DWLτ (I)| τ = 0] (2.78)

=
1

2

(
1

β
n

+ δ

){(
nδ

β

)2

var [θm| I] + 2

(
nδ

β

)
cov [θm, γ| I] + var [γ| I]

}
.

Respectively, with a constant quantity regulation (τ →∞) the expected deadweight loss is

E [DWLq (I)] = E [DWLτ (I)| τ →∞] (2.79)

=
1

2

(
1

β
n

+ δ

)
{var [θm| I]− 2cov [θm, γ| I] + var [γ| I]} .

2.C Linear equilibrium strategy of the generalized VCG mechanism

From Appendix 2.A, the expected value of θi conditional on si and sm is E [θi|s] = Aθ̄ +

Bsi +Cnsm. If there is correlation between marginal abatement costs and pollution damage

(σγθ 6= 0), the total supply of pollution rights writes as QS = 1
δ

(
p− γ̄ − nZ

(
sm − θ̄

))
. Thus,

16Note that the optimal slope of the general model is τ? =
βσγθ+nδ

1
n (1+(n−1)ρ)σ2

θ
1
n (1+(n−1)ρ)σ2

θ−σγθ
, which gives E [DWL?τ ] =

1
2

(
1

β
n+δ

)
var [γ| θm]. With the symmetric a�ne linear model, τ? and E [DWL?τ ] are independent of infor-

mation I, when the permit market is perfect. For a more general analysis, see Chapter 3.
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in equilibrium we have

nsm =
1

b+ Z
δ

(
1

δ

(
p− γ̄ + Znθ̄

)
− na+ ncp

)
.

The �rst-order condition of the Vickrey auction is written as

E [θi|si, sm]− βqi = p

βqi = Aθ̄ +Bsi + C

(
1

b+ 1
δ
Z

)(
1

δ

(
p− γ̄ + Znθ̄

)
− na+ ncp

)
− p

qi =
Abθ̄ − 1

δ

(
Cγ̄ − (A+ nC)Zθ̄

)
− Cna

β
(
b+ 1

δ
Z
) +

B

β
si

−
(
b− Cnc− 1

δ
(C − Z)

)
β
(
b+ 1

δ
Z
) p.

Plugging in qi = Di (p; si) = a+ bsi − cp and solving for parameters a, b and c results in

a =
1

β

(
BAθ̄

B + nC + β
δ
Z

)
− 1

δ

(
Cγ̄ − (A+ nC)Zθ̄

B + nC + β
δ
Z

)
b =

1

β
B

c =
1

β

(
B

B + nC + β
δ
Z

)
− 1

δ

(
C − Z

B + nC + β
δ
Z

)
.
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The clearing price of the Vickrey auction in the information stage is thus

pv (s) =
nδa+ nδbsm + γ̄ + nZ

(
sm − θ̄

)
nδc+ 1

=
nδ
{

1
β
BAθ̄ − 1

δ

(
Cγ̄ − (A+ nC)Zθ̄

)}
nδ
(

1
β
B − 1

δ
C + 1

δ
Z
)

+B + nC + β
δ
Z

+

(
B + nC + β

δ
Z
) (

nδ
β
Bsm + γ̄ + nZ

(
sm − θ̄

))
nδ
(

1
β
B − 1

δ
C + 1

δ
Z
)

+B + nC + β
δ
Z

=

(
B + β

δ
Z
) (

nδ
β
Aθ̄ + γ̄ + nZ

(
sm − θ̄

))
+ nC

(
nZθ̄ − γ̄

)(
1 + nδ

β

) (
B + β

δ
Z
)

+

(
B + β

δ
Z
)
nδ
β

(B + nC) sm + nC
(
γ̄ − nZθ̄

)(
1 + nδ

β

) (
B + β

δ
Z
)

=

nδ
β
Aθ̄ + γ̄ + nZ

(
sm − θ̄

)
+ nδ

β
(1− A) sm(

1 + nδ
β

)
=

nδθ̄ + βγ̄ + (nδ (1− A) + βnZ)
(
sm − θ̄

)
β + nδ

.

This is equal to p̄ (s) in (2.23). Respectively, the total level of allocated permits is

Qv =
1

δ

(
pv − γ̄ − Z

(
nsm − nθ̄

))
=

θ̄ + β
nδ
γ̄ +

(
1− A+ β

nδ
nZ
) (
sm − θ̄

)
−
(
β
nδ

+ 1
)
γ̄ −

(
β
nδ

+ 1
)
nZ
(
sm − θ̄

)
β
n

+ δ

=
θ̄ − γ̄ + (1− A− nZ)

(
sm − θ̄

)
β
n

+ δ

= Q̄ (s) .

Furthermore, q̄m (s) = 1
n
Q̄ (s) and this gives for an individual �rm q̄i (s) = q̄m (s)+b (si − sm) =

q̄m (s) +B
β

(si − sm), which is equal to (2.25).
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2.D Proofs of Section 2.4

Proof of Proposition 2.1

Suppose that other �rms bid sincerely in the information stage and �rm i bids according to

signal s′i when its true signal is si. Suppose also that s′i < si. The expected equilibrium

outcome qi,q (s′) given strategies according to s′ = (s′i, s−i) in the information stage and the

constant quantity regulation in the second stage may derive from (2.31). Using θ̄i (s)−θ̄i (s′) =

(B + C) (si − s′i) and θ̄m (s)− θ̄m (s′) =
(
B
n

+ C
)

(si − s′i) yields

qi,q (s′) = q̄i (s
′) +

1

β

(
n− 1

n

)
B (si − s′i) ,

= qei (s)−
(

1− A− nZ
β + nδ

)
1

n
(si − s′i) .

Furthermore, the expected equilibrium price of the secondary market writes from (2.30):

pq (s′) = pv (s)− δ (1− A) + βZ

β + nδ
(si − s′i)︸ ︷︷ ︸

pv(s′)

+

(
B

n
+ C

)
(si − s′i)

= pv (s) +

(
1− A− nZ

1 + nδ
β

)
1

n
(si − s′i) .

If the resale market is coalitionally-rational against individual bidders, �rm i can reap all the

gains from trade in the second-stage resale market, but not more. If this is the case, instead

of the equilibrium price pq (s′), it pays for permits according to the expected inverse residual

supply function

RS
−1

i (qi, s
′
i; s) = pq (s′) +

(
β

n− 1

)
(qi − qi,q (s′)) .

The pro�t of the second stage for �rm i due to the deviation strategy is then from (2.56):

πi,q (s′i; si, s−i) =

ˆ qi,q(s
′)

q̄i(s′)

{
vi (x; s)−RS−1

i (x, s′i; s)
}
dx.

Suppose that var [θm] ≥ σγθ holds and thus 1−A ≥ nZ. This implies that q̄i (s′) < qi,q (s′) <
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qei (s) and pq (s′) > pv (s) when s′ = (s′i, s−i) with s
′
i < si. These give for the IC condition:

∆q,IC =

ˆ qi,q(s
′)

q̄i(s′)

{
RS
−1

i (x, s′i; s)−RS−1
i (x; s−i)

}
dx (2.80)

+

ˆ qei (s)

qi,q(s′)

{
vi (x; s)−RS−1

i (x; s−i)
}
dx.

Given that (2.54) holds, vi (qi; s) ≥ RS−1
i (qi; s−i) for all qi ≤ qei (s). Thus, the second integral

of (2.80) is positive. Furthermore, if RS
−1

i (qi, s
′
i; s) ≥ RS−1

i (qi; s−i) at both extreme points

of the �rst integral in (2.80), then ∆q,IC ≥ 0. At qi,q (s′), equilibrium conditions guarantee

that RS
−1

i (qi,q (s′) , s′i; s) = vi (qi,q (s′) ; s) ≥ RS−1
i (qi,q (s′) ; s−i). At q̄i (s′), on the other hand,

RS−1
i (q̄i (s

′) ; s−i) = pv (s′) and

RS
−1

i (q̄i (s
′) , s′i; s) = pq (s′) +

(
β

n− 1

)
(q̄i (s

′)− qi,q (s′))

= pv (s′) + C (si − s′i) .

Thus if s′i ≤ si then RS
−1

i (qi, s
′
i; s) ≥ RS−1

i (qi; s−i) for an interval qi ∈ [q̄i (s
′) , qi,q (s′)] and

∆q,IC ≥ 0. Similar arguments hold if s′i > si.�

Proof of Corollary 2.1

According to Proposition 2.1, the information mechanism is incentive compatible if var [θm] ≥
σγθ and thus if 1− A ≥ nZ. Suppose instead that nZ > 1− A, which implies that Q̄ (s′) >

Q̄ (s) and hence with constant quantities in the second stage q̄i (s′) < qei (s) < qi,q (s′) and

pq (s′) < pv (s) when s′ = (s′i, s−i) with s
′
i < si. Thus it is easy to see that

vi (qi; s)−RS−1
i (qi; s−i) = (β + τv) q

e
i (s)− (β + τv) qi

and

vi (qi; s)−RS−1

i (qi, s
′
i; s) =

(
n

n− 1

)
βqi,q (s′)−

(
n

n− 1

)
βqi.
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Thus, with the second-stage quantity regulation and when the resale market is coalitionally-

rational against individual bidders, the IC condition may write

∆q,IC =

ˆ qei (s)

q̄i(s′)

{
vi (x; s)−RS−1

i (x; s−i)
}
dx−

ˆ qi,q(s
′)

q̄i(s′)

{
vi (x; s)−RS−1

i (x, s′i; s)
}
dx

= (β + τv)

ˆ qei (s)

q̄i(s′)

{qei (s)− x} dx−
(

n

n− 1

)
β

ˆ qi,q(s
′)

q̄i(s′)

{qi,q (s′)− x} dx

=
1

2
(β + τv) (qei (s)− q̄i (s′))2 − 1

2

(
n

n− 1

)
β (qi,q (s′)− q̄i (s′))2

=
1

2
(β + τv)

(
1

β

(
(n− 1)B +

1− A− nZ
1 + nδ

β

)
1

n
(si − s′i)

)2

−1

2

(
n

n− 1

)
β

(
1

β

(
n− 1

n

)
B (si − s′i)

)2

=
1

2β

(
n− 1

n

)
(si − s′i)

2
B2

×

(1 +
τv
β

)(
n− 1

n

)1 +
1− A− nZ(

1 + nδ
β

)
(n− 1)B

2

− 1

 .

Using (2.53) we get

(
1 +

τv
β

)
=

(
1 +

nδ

β

) (n− 1)B · var [sm] + var [θm](
1 + nδ

β

)
(n− 1)B · var [sm] + var [θm]− σγθ

 .

Hence, while 1 − A − nZ =
var[θm]−σγθ
var[sm]

, the Vickrey auction of the �rst stage with constant

quantities in the second stage is incentive compatible and ∆q,IC ≥ 0 if

σγθ ≤ var [θm]

+

(
1 +

nδ

β

)
(n− 1)B · var [sm]

(
1−

(
n

n− 1

)
(n− 1)B · var [sm]

(n− 1)B · var [sm] + var [θm]

)
σγθ

var [θm]
≤ 1 +

(
1 +

nδ

β

)
(n− 1)

(
B

B + nC

)(
C

B + C

)
.
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Respectively, without any resale market,

∆q,IC =

ˆ qei (s)

q̄i(s′)

{
vi (x; s)−RS−1

i (x; s)
}
dx

=
1

2β

(
1

n
(si − s′i)

)2
(n− 1)B · var [sm] + var [θm](

1 + nδ
β

)
(var [sm])2


×
((

1 +
nδ

β

)
(n− 1)B · var [sm] + var [θm]− σγθ

)
.

Thus, without the second-stage regulation, ∆q,IC ≥ 0 if

σγθ
var [θm]

≤ 1 +

(
1 +

nδ

β

)
(n− 1)

(
B

B + nC

)
.�

Proof of Corollary 2.2

Suppose that other �rms bid sincerely in the information stage and �rm i bids according to

signal s′i when its true signal is si. Suppose also that s′i < si. Then RS
−1

i (qi, s
′
i; s) ≤ pq (s′)

and thus pq (s′) ≥ RS−1
i (qi; s−i) for qi ∈ [q̄i (s

′) , qi,q (s′)]. Hence ∆q,IC > 0 if RS
−1

i (qi, s
′
i; s)

is replaced by pq (s′) in (2.80). Similar arguments hold if s′i > si.�

Proof of Proposition 2.2

Suppose that other �rms bid sincerely in the information stage and �rm i bids according to

signal s′i when its true signal is si. Suppose also that s′i < si. Then, given a signal vector

s′ = (s′i, s−i), the constant price regulation in the second stage is de�ned by p̄ (s′) = pv (s′).

Moreover, the expected pro�t of the second stage for �rm i reduces to

πi,p (s′i; si, s−i) =

ˆ qi,p(s′)

q̄i(s′)

{vi (x; s)− pv (s′)} dx.

This on the other hand yields for the IC condition

∆p,IC = −
ˆ qei (s)

q̄i(s′)

{
RS−1

i (x; s−i)− pv (s′)
}
dx−

ˆ qi,p(s′)

qei (s)

{vi (x; s)− pv (s′)} dx. (2.81)

From the equilibrium conditions it is known thatRS−1
i (q̄i (s

′) ; s−i) = pv (s′) and vi (qi,p (s′) ; s) =

pv (s′). Suppose that δ (1− A) + βZ > 0 and thus σγθ
var[θm]

> −nδ
β
. Hence, pv (s′) ≤ pv (s)

when s′i < si. This also implies that q̄i (s′) < qei (s) < qi,p (s′). Also, RS−1
i (qi; s−i) must then
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be a non-decreasing function and RS−1
i (qi; s−i) ≥ pv (s′) for all q̄i (s′) ≤ qi ≤ qei (s). While

vi (qi; s) is a non-increasing function in qi, both integrals in (2.81) are non-negative and thus

∆p,IC < 0.

However, whenever pv (s′) ≥ pv (s) the opposite is true and ∆p,IC ≥ 0. If pv (s′) ≥ pv (s), it

must hold that qi,p (s′) < qei (s) due to non-increasing vi (qi; s) and (2.81) may write

∆p,IC =

ˆ qi,p(s′)

q̄i(s′)

{
pv (s′)−RS−1

i (x; s−i)
}
dx+

ˆ qei (s)

qi,p(s′)

{
vi (x; s)−RS−1

i (x; s−i)
}
dx. (2.82)

Furthermore, RS−1
i (qi; s−i) must now be a non-increasing function and pv (s′) ≥ RS−1

i (qi; s−i)

for all q̄i (s′) ≤ qi ≤ qei (s). Hence the �rst integral must be non-negative. Furthermore,

vi (qi; s) ≥ RS−1
i (qi; s−i) for all qi ≤ qei (s), given that var [θm] ≥ σγθ, and also the second

integral must be non-negative. Hence ∆p,IC ≥ 0 and the Vickrey auction followed by the

constant price regulation is incentive compatible only if var [θm] ≥ σγθ and
dRS−1

i (qi;s−i)

dqi
≤ 0.

Together these require that
σγθ

var [θm]
≤ −nδ

β
.

Similar arguments hold if s′i > si.�

2.E Imperfect permit market

In this section I relax the assumption of a perfect permit market. However, I keep the

model relatively general and just assume that the market su�ers from trade frictions which

make trading costly for �rms. The trading cost function is denoted by TC (∆qi), where

∆qi = |qi − hi| ≥ 0 is the amount of trading in the permit market of �rm i. Further, I

assume quadratic trading costs:

TC (∆qi) =
1

2
ω (∆qi)

2 , (2.83)

where ω > 0 denotes the coe�cient of market performance. For simplicity, I assume that ω

is common knowledge and exogenous to the other parameters of the model. Trading costs

do not change the results of the constant price regulation, but the maximization problem of

the constant quantity regulation turns into:

max
qi,hi

πi,q (qi, hi; θi) =

ˆ qi

q̄i(I)

ui (x; θi) dx (2.84)

+

ˆ ∆qi

0

{pq − ωx} dx1{hi>qi} −
ˆ ∆qi

0

{pq + ωx} dx1{qi>hi}.
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Taking the �rst-order conditions and solving the system gives the equilibrium price from

(2.73)

pq = p̄ (I) + θm − θ̄m (I) . (2.85)

In the equilibrium, �rm i's pollution is

qi,q = q̄i (I) +

(
1

β + ω

){(
θi − θ̄i (I)

)
−
(
θm − θ̄m (I)

)}
. (2.86)

Hence, with a constant quantity regulation, the expected deadweight loss writes as (see

Chapter 3 for derivation)

E [DWLq (I, ω)] =
1

2

(
1

β
n

+ δ

)
{var [θm| I]− 2cov [θm, γ| I] + var [γ| I]} (2.87)

+
n

2β

(
1

1 + β
ω

)2

{var [θi| I]− var [θm| I]}︸ ︷︷ ︸
EDWLω(I)

.

When the frictions in the permit market increase, the second term of (2.87) increases and

the quantity regulation becomes a less attractive regulatory instrument. Note also that

var [θi| 0]− var [θm| 0] ≥ var [θi| s]− var [θm| s](
n− 1

n

)
(1− ρ)σ2

θ ≥ (1−B)

(
n− 1

n

)
(1− ρ)σ2

θ

B ≥ 0.

Hence, the less noisy the signals are the more is gained from the information mechanism

even if the permit market is imperfect. This is clear while the allocation is then close to

the �rst-best and the resale market is not needed. The modi�ed Weitzman rule with linear

marginal trading costs in the permit market is written as

∆Mod
pq,ω =

1

2

(
1

β
n

+ δ

){[
A−

(
nδ

β

)2
]
var [θm]−

[
2A+ nZ + 2

(
nδ

β

)]
σγθ

}
(2.88)

− 1

2β

(
1

1 + β
ω

)2

(1−B) (n− 1) (1− ρ)σ2
θ .

Below I have run numerical simulations. In the simulations I vary the standard deviation
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of the signal noise (σε ) and the correlation coe�cient of the aggregate abatement costs and

pollution damage (ργθ). The other parameters of the a�ne linear model are kept �xed. The

�xed parameter values are presented in Table 2.2 and the values of the two variating variables

in Table 2.3.

Table 2.2: Simulations - �xed parameter values

Variable Value
n Number of �rms 10
σθ Standard deviation of the abatement cost parameter 10
ρ Correlation coe�cient of the abatement costs 0.5
β/n Slope of the aggregate abatement costs 1
σγ Standard deviation of the damage parameter 10
δ Slope of the pollution damage 1

Table 2.3: Simulations - values of variating variables

Variable σε Standard deviation of the signal noise
Value 5 10 20

ργθ Correlation coe�cient -0.2 Simulation 1 Simulation 2 Simulation 3
of abatement costs 0 Simulation 4 Simulation 5 Simulation 6
and pollution damage 0.2 Simulation 7 Simulation 8 Simulation 9

Figure 2.3 presents the expected deadweight losses of the two constant regulations. The

dashed lines are constant price regulations and the solid lines constant quantity regulations

when the regulator knows the private information of �rms (I = s, blue curves) and when

the regulation is implemented using only prior information (I = 0, red curves). Given

the structure of the model, the price regulation with I = s cannot be attained due to the

incentive compatibility conditions and the dashed blue curve p(s) denoting the two-stage

price regulation is thus thinner in Figure 2.3 than the other curves.

From the simulations, the two-stage quantity regulation (solid blue line) performs worse than

the one-stage price regulation (dashed red line) when the correlation between abatement costs

and pollution damage is negative (the upper panels), signal noise is high (panels on the right)

and when the permit market frictions increase. The two extremes are Simulations 3 and 7.

Moreover, the value of information increases in precision of signals. In all simulations −nδ
β
<

σγθ
var[θm]

< 1. Hence, according to Lemma 2.4, the di�erence between the welfares of quantity

regulations with and without private information of �rms is decreasing in σγθ. Respectively,

the welfare di�erence of price regulations due to private information is increasing in σγθ

(Lemma 2.5).
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Figure 2.3: Expected deadweight losses of the constant price regulation (p (I)) and the con-
stant quantity regulation (q (I)) when the coe�cient of market performance ω increases. The
red curves describe the cases when the regulator knows only the prior information (I = 0)
and the blue curves the cases when the regulator knows the private information of �rms
(I = s). The parameter values of the various simulations are presented in Tables 2.2 and 2.3.
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Chapter 3

Learning through one round of

communication in regulating the

commons when markets are imperfect

Abstract

When regulating pollution, regulation has often to be designed using only asymmetric and incomplete

information. Even if polluting �rms are privately better informed than the regulator, they may not

have accurate information about their own emission abatement costs. If the regulator is planning

to implement a program of tradeable emissions permits and if the permit market is perfect, the

regulator is able to obtain a solution that maximizes the expected social welfare without the private

information of �rms. However, this private information is valuable to the regulator if the permit

market is not perfect. This paper presents a two-stage regulation when the permit market su�ers

from market imperfections. In the �rst stage, the regulator conducts a generalized Vickrey-Clarke-

Groves (VCG) mechanism. The main goal of the �rst-stage auction mechanism is to collect private

information from regulated �rms. In addition, the �rst stage serves as an initial permit allocation

method. The Vickrey payment rule rewards �rms for revealing their information sincerely to the

regulator. In the second stage, given the information on the expected costs of reducing emissions,

the regulator implements a quantity regulation, where non-constant permit supply schedules take

into account the frictions of the permit market. I study the incentive compatibility conditions of

the �rst stage auction mechanism followed by a resale market for permits in the regulation stage. I

show that given the a�ne linear structure of the model, the best response is to bid sincerely in the

Vickrey auction if every other �rm is bidding sincerely, unless the (negative or positive) correlation

between aggregate abatement costs and pollution damage is relatively high.
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3.1 Introduction

In many commons problems, regulation has to be designed using asymmetric and incom-

plete information. Polluting �rms, for instance, are normally privately better informed than

the regulator with regard to the costs of reducing emissions. When a new regulation is be-

ing implemented, even regulated �rms may not have accurate information about their own

abatement costs. To comply with the new regulation the production processes need to be

revised or new, and perhaps still immature, technologies implemented. Moreover, if all the

regulated �rms have similar sets of possible abatement technologies, uncertain costs may be

correlated between �rms. Once the regulation is implemented and �rms start to invest in

new technologies, the uncertainty about the costs will gradually vanish. From the regula-

tor's point of view, however, it may not be possible to wait for the revelation of uncertain

reduction costs. Without any regulation, �rms are not willing to install new technologies

and they do not learn the true costs of emission reductions. The choice of the regulatory

instrument has to be made under incomplete information. Suppose, for instance, that the

regulator is planning to implement a program of tradeable emissions permits. When the

market for emission permits is new, the market may not perform perfectly. Trading may be

costly due to searching or other transaction costs, trading may not be e�cient due to asym-

metric information between trading partners, some of the traders may have market power,

or there may be policy failure due to overlapping environmental regulation. If the permit

market was perfectly competitive without any trading frictions, the regulator would be able

to obtain a solution that maximizes the expected social welfare without the private infor-

mation of �rms. Then the regulator would have to care only about the aggregate pollution

level and thus the aggregate supply schedule of permits needs to be set equal to the expected

marginal damage function. However, when the permit market is not perfect, it is not only

the aggregate pollution but also the distribution and the initial allocation of permits among

regulated �rms which is important in terms of the expected welfare. Most importantly, the

private information of �rms is then valuable to the regulator.

For concreteness, consider electricity companies emitting greenhouse gases. In recent years,

these companies have been regulated, or are expected to be regulated, by new climate policy

instruments, such as the EU Emissions Trading System (EU ETS). The generation mix of a

typical company contains varying shares of gas, oil, coal and nuclear power, and renewable

energy. Depending on the production portfolio and investment cycles, companies have dif-

ferent investment plans for the future. If the regulatory requirement changes the investment

plan of a company, the company faces additional costs.1 Uncertainty about these abate-

1This is of course a dynamic problem, whereas the model I consider is a static one. However, consider
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ment costs arises from several factors, such as the development and learning e�ects of new

technologies, the relative costs of primary fuels, local weather conditions, economic growth

or future climate policies. However, due to similar sets of generating units in production

portfolios and possible new technologies, the e�ects of these factors are fairly similar for all

companies. Hence, the assumption of uncertain and correlated abatement costs is reason-

able. Furthermore, the implementation and design of the EU ETS has been criticized due

to numerous �aws. One of the most crucial is the overallocation of EU emissions allowances

in the �rst two phases of the EU ETS. This was due to the limited information about �rms'

abatement costs and business-as-usual emissions before Phase I (2005-2007) but also due to

the non-adjustable supply of allowances during the recent economic downturn in Phase II

(2008-2012).

This paper addresses the role of �rms' private information when a new regulatory instrument

for pollution is designed and implemented. To my knowledge, the previous literature does not

distinguish clearly whether �rms learn their abatement costs before or after the regulation is

designed and implemented and how the information structure a�ects the optimal regulation.

In particular, I ask the following questions. How should the regulation be designed when the

permit market is imperfect, abatement costs are uncertain, and �rms are better informed than

the regulator at the outset? Under what conditions is the private information of regulated

�rms valuable to the regulator and are there any mechanisms that provide incentives for

regulated �rms to reveal their information to the regulator?

To answer these questions, I propose a two-stage regulation. In the �rst stage, the regulator

conducts an auction mechanism. The main goal of the auction is to collect private informa-

tion from regulated �rms. In addition, the auction mechanism serves as an initial allocation

method for pollution permits. In the second stage, given the information on the expected

abatement costs, the regulator implements a quantity regulation, where permit supply sched-

ules adjust to the abatement cost shocks and take into account the frictions of the permit

market.

There is a broad literature on regulating externalities under incomplete information. In a

seminal paper, Weitzman (1974) de�nes a rule for choosing between price and quantity reg-

ulation. With a price regulation, a uniform tax rate is set at the constant level, regardless

of the quantity of emissions. Respectively, in a quantity regulation, which could be imple-

mented through a tradeable permit program, the supply of permits is constant regardless

a program of tradeable permits. If all permits that will be issued to the market are eligible for the whole
regulation period (banking of permits is allowed) and if emission reduction activities are independent of each
other, it is then possible to simplify the analysis to the static case. Then we just calculate the net present
value of every single abatement activity conducted at di�erent points in time.
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of the price. These two simple regulation alternatives may be called �constant� regulations.

Roberts and Spence (1976), Weitzman (1978) and, more recently, Kennedy et al. (2010) and

Yates (2012) provide examples of non-constant regulatory schemes that improve the out-

comes relative to constant regulations. In a non-constant tax regulation, the tax rate varies

with the quantity of emissions. In a non-constant quantity regulation, the permit supply is

de�ned as a function of price. Kennedy et al. and Yates show that, when the permit market

is perfect, non-constant permits with free trading lead unambiguously to lower total expected

social costs than non-constant taxes. The intuition is clear. In equilibrium, when the ag-

gregate permit supply equals the expected marginal damage and when the permit market is

perfect, the marginal abatement costs are equal across �rms, and they are also equal to the

expected marginal damage. Thus the expected welfare is maximized. However, when using

non-constant taxes, the marginal abatement costs may not be equal across �rms. On the

other hand, when the permit market does not function properly or is absent, optimal permit

supply schedules will coincide with optimal non-constant taxes.

All the aforementioned papers use a similar model structure in many respects. Abatement

costs and pollution damage are quadratic and their functional forms are common knowledge.

Apart from Yates (2012), pollution is assumed to be uniformly mixed. Intercepts of marginal

abatement costs and marginal damage are uncertain to the regulator but the slopes are

common knowledge.2 The regulator knows only the distribution functions of the unknown

parameters of the abatement costs, whereas �rms know their abatement costs exactly. Firms

may learn their abatement costs either before or after the regulation is designed. However, the

timing of the learning is not in the focus in these papers. Finally, if the quantity regulation

is considered, the permit market is assumed to be perfect.

The second strand of literature this paper is related to considers multi-unit auctions and, in

particular, Vickrey-Clarke-Groves (VCG) mechanisms3 (Vickrey 1961, Clarke 1971, Groves

1973). In a pollution regulation setup, Dasgupta et al. (1980) and Montero (2008) provide

e�cient mechanisms applying the VCG pricing rule. Both Dasgupta et al. and Montero

consider the model of pure private values, i.e. each �rm has complete information about its

own abatement costs. Dasgupta et al. propose a tax scheme applying a direct VCG mech-

anism and Montero examines indirect implementation of a VCG mechanism by proposing a

simple sealed-bid auction mechanism for emissions permits with endogenous (non-constant)

supply. With pure private values, the VCG mechanism implements e�cient allocation of

permits in dominant strategies. Thus it is in each �rm's private interest to reveal its true

2In Kennedy et al. (2010) and Yates (2012) the damage function is not uncertain.
3The VCG mechanism is a multi-unit extension of a single-unit Vickrey auction. In this paper these are

used as synonyms.
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information, whatever the other �rms do. Due to the Vickrey pricing rule, each �rm pays

exactly the externality it imposes on other agents. In the case of pollution regulation, the

payment includes the pecuniary externality to other �rms and the residual damage of the

�rm's own emissions.

In this paper, the model structure is di�erent in three important ways. First, I relax the

assumption of a perfect permit market. However, I keep the model relatively general in this

respect and do not specify the source or nature of the market imperfections. However, these

market frictions a�ect symmetrically both the demand and the supply side of the permit

market. The frictions are modeled as linear marginal trading cost functions. If the frictions

are modest, the regulation in the second stage is close to the Roberts and Spence (1976)

non-constant permit regulation and if the frictions are very large, the optimal second-stage

regulation is Weitzman's (1978) non-constant tax regulation.4

Second, I assume that �rms are better informed than the regulator about abatement costs

when the regulation is designed and implemented. In the absence of frictions, the regulator

does not need the private information of �rms in order to implement the optimal second-

best regulation. However, when market frictions are present, the expected welfare loss is

reduced due to better information from the �rst-stage auction mechanism. Then the private

information of �rms is valuable to the regulator when designing the regulation.

Third, I assume that regulated �rms do not have complete information about their own abate-

ment costs before the regulation is implemented. Each �rm has only a noisy estimate of its

own abatement costs. Furthermore, the abatement costs between �rms are correlated. Due

to these uncertain and correlated abatement costs, the �rms' expected marginal valuations

of permits in the �rst-stage auction mechanism are interdependent. Without any regulation,

�rms do not reduce emissions and the true abatement costs will never be revealed. Besides,

it is not known to any �rm or to the regulator when the true costs will be revealed to �rms,

even when �rms start to abate their emissions. Thus it is not possible for the regulator to

wait for the values to become private. Unfortunately, the e�ciency property of the VCG

mechanisms is not generally sustained when agents have common or interdependent values

(Jehiel and Moldovanu, 2001). However, when the bidders' private information can be sum-

marized by one-dimensional signals and the marginal value functions satisfy continuity, value

monotonicity and the single-crossing properties, then a generalized Vickrey auction without

a resale market is ex-post e�cient (Dasgupta and Maskin 2000, Ausubel and Cramton 2004).

Moreover, I allow the uncertain bene�ts and costs of emissions reductions to be correlated.

4In Chapter 2, I examine a two-stage regulation with either a constant quantity regulation or a constant
price regulation in the second stage. However, in Chapter 2 I assume a perfect permit market. Otherwise
the models have a similar structure.
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Stavins (1996) presents examples of statistical dependence between the marginal bene�ts

and marginal costs of environmental protection.5 I show that, if the correlation between the

aggregate abatement costs and pollution damage is not too high (negatively or positively),

it is the best response to bid sincerely in the Vickrey auction if every other �rm is bidding

sincerely. Hence the Vickrey auction is incentive compatible and ex-post e�cient even if the

auction is followed by the regulation stage and thus the resale market of permits.

In Section 3.2, I introduce a two-stage regulation model with trade frictions and the a�ne

linear structure of the model. The model is solved backwards. In Section 3.3, I describe a

non-constant quantity regulation in the second stage. The Vickrey auction in the �rst stage

is elaborated in Section 3.4. Section 3.5 concludes.

3.2 Model

The model consists of n ≥ 2 risk-neutral polluting �rms indexed with i = 1, ..., n.6 Pollution

is denoted by a vector q = (q1, . . . , qn) and the aggregate pollution is given byQ =
∑n

i=1 qi. In

order to reduce emissions, �rms have to install new and cleaner technology, change production

processes, use more expensive inputs or perhaps even reduce production to some extent.

Hence, �rm i's value of its pollution qi is based on the avoided costs of reducing emissions

from the business-as-usual level of pollution, qbaui . The gross value of avoided abatement

costs of �rm i, i.e. the gross value of pollution, is denoted by Ui (qi; θi), where the �rm-

speci�c cost paramater is θi. Let θ = (θ1, . . . , θn) denote the vector of cost parameters. I

assume that these cost parameters are correlated. U ′i = dUi
dqi

= ui (qi; θi) is the marginal value

of avoided abatement costs (or the marginal abatement cost function). Furthermore, the

pollution damage function is DF (Q; γ). DF ′ = dDF
dQ

= MDF (Q; γ) is the marginal damage

function and γ is a damage parameter. Pollution is assumed to be uniformly mixed. I assume

that U ′i = dUi
dqi

> 0, U ′′i ≤ 0, and DF ′ = dDF
dQ

> 0, DF ′′ ≥ 0.

With complete information about the costs and bene�ts of emission reductions, the ultimate

problem is to maximize the social welfare with respect to the pollution vector q:

max
q
W (q) =

n∑
i=1

Ui (qi; θi)−DF

(
n∑
i=1

qi; γ

)
. (3.1)

5Consider again the example of climate change. The consequences of climate change are very uncertain.
It has implications for economic growth and for local climate and weather conditions, among other things.
Even if it is di�cult to determine the causal relations between di�erent factors, it is reasonable to argue that
�rms' investment costs and possible damage caused by climate change have some common factors, and thus
there may be a statistical dependence between them.

6There could also be only one �rm, but I assume for now that there are a number of �rms.
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The �rst-best (interior) solution to this problem is denoted by a vector q? = (q?1, . . . , q
?
n),

where 0 < q?i < qbaui for all i and Q? =
∑n

i=1 q
?
i . In the �rst-best, the pollution of each

�rm is reduced to a level where the marginal value of pollution equals the �rst-best price,

i.e. ui (q?i ; θi) = p?. In addition, the �rst-best price equals the value of the marginal damage

function, i.e. p? = MDF (Q?; γ).

The �rst-best solution is unknown to the regulator and �rms, while they do not have exact

information about the true damage function nor about the true emission reduction costs.

However, even if the cost parameters θi are unknown to �rms and to the regulator when the

regulation is implemented, �rms are privately better informed than the regulator at the outset

and learn their true abatement costs when they start to put the new abatement technologies

into operation. Hence, I assume that each �rm receives a noisy estimate, i.e. signal si, of its

cost parameter before the regulation is implemented. I denote by s = (s1, . . . , sn) the signal

vector and by s−i = (s1, . . . , si−1, si+1, . . . , sn) the signal vector of every other �rm but �rm

i.

Suppose that the regulator implements a regulation denoted by r. Let πi,r (qi; θi) denote the

pro�ts of �rm i given the regulation r. Thus the pro�t-maximizing solution of �rm i after the

revelation of θi is denoted by qi,r = arg max πi,r (qi; θi). Respectively, let qr = (q1,r, . . . , qn,r)

denote the vector of pro�t-maximizing pollution levels. Qr =
∑n

i=1 qi,r is the total level of

pollution. The regulator chooses a regulation that maximizes the expected welfare given

the reactions of �rms to the regulation. An equivalent problem is to minimize the expected

deadweight loss:

min
r
E [DWLr] = E [W (q?)−W (qr)] (3.2)

= E

[
n∑
i=1

Ui (q
?
i ; θi)−

n∑
i=1

Ui (qi,r; θi)−DF (Q?; γ) +DF (Qr; γ)

]
s.t.

qi,r = arg max πi,r (qi; θi) .

The regulation I consider in this paper is implemented in two stages. The regulation takes

into account the imperfections of the permit market and the information structure of the

regulatory environment. In order to derive tractable results I introduce an a�ne linear

model. These are described next.
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3.2.1 Two-stage regulation with an imperfect permit market

To begin with, I introduce the timing of the regulation. The two-stage regulation is conducted

by the following steps:

• t0: All �rms and the regulator learn the distribution functions of uncertain parameters

and the functional forms of �rms' abatement costs. Each �rm receives its own signal

si.

• t1: The �rst stage - the information stage. The regulator conducts an auction, in

which emission permits are initially allocated to �rms. The regulator announces both

the rules of the auction mechanism and rules of the regulation during the regulation

period. In the auction, each �rm i simultaneously submits a demand schedule to the

regulator. The regulator sets the clearing price and the total quantity of permits to be

allocated. Then it distributes permits to �rms and collects the auction payments from

�rms. The regulation period starts after the auction.

• t1 − t2: The second stage - the regulation stage. Firms are allowed to trade permits

with each other. In addition, they may purchase more permits from the regulator or

sell permits back to the regulator according to non-constant permit supply schedules.

Firms learn their cost parameters during the regulation period.

• t2: All �rms have learned their cost parameters. The time point t2 is not known to any

�rm or the regulator at the outset. The true pollution damage is not revealed.

In the information stage, the regulator conducts a mechanism, the main goal of which is

to collect private information from regulated �rms. In addition, the �rst-stage mechanism

serves as an initial allocation method for permits. Utilizing a generalized Vickrey auction,

the initial allocation is ex-post e�cient, if the incentive compatibility conditions are satis�ed.

The incentive compatibility of this regulation is de�ned as follows.

De�nition 3.1. The Vickrey auction in the information stage is said to be incentive com-

patible (IC) if bidding sincerely in the auction is the best response to other bidders' strategies

when they bid sincerely.

Three important issues must be addressed. First, without any regulation, no abatement and

thus no learning about the abatement costs will occur. Second, the regulator is not able

to conduct auctions continuously one after another. There is always a time period between

two consecutive auctions. During this period between two possible auctions, �rms take

di�erent actions. They make decisions about abatement technologies, they produce products
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for primary markets, they trade inputs, outputs and, perhaps, emissions permits with each

other. Most importantly, �rms learn and want to adjust their permit holdings. Due to the

learning and �rms' actions, the regulator is willing to implement a second-stage regulation

in the period following an auction. Hence, at the beginning of the regulation period, the

regulator allocates non-constant permit schedules to �rms. After the initial allocation, �rm

i may purchase more permits from the regulator or sell excess permits back to the regulator

according to the schedule allocated to it. In addition, �rm i is free to make transactions in

the permit market with other �rms.

Third, at least with the structure of this paper, the regulator does not need the private

information of �rms in order to implement the second-best regulation if the permit market

is perfect and if the regulator uses a non-constant regulation.7 However, �rms' private in-

formation is valuable to the regulator if the permit market is not perfect. Optimal permit

schedules take into account the frictions of the permit market as well as the information from

the �rst-stage auction.

With an imperfect permit market, it is reasonable to reduce the amount of trading in the

permit market and to make the initial allocation of permits as e�cient as possible. I model

permit market trade frictions as increasing costs of actual trades in the market. The costs

of trading a�ect symmetrically both the seller and the buyer side of the market. I keep the

model relatively general and I do not specify the nature or source of trade frictions. Frictions

can be a consequence of transaction costs (e.g. Stavins 1995), market power (e.g. Malueg and

Yates 2009), asymmetric information between traders (Myerson and Satterthwaite 1983) or

any other source of market imperfection. However, to give a name to these costs, I call them

trading costs. The trading cost function is equal for all �rms and is denoted by TC (∆qi),

where ∆qi ≥ 0 is the amount of trading in the permit market of �rm i. The more �rm i trades

in the market, the higher the costs of the transactions are. Hence TC ≥ 0 and TC ′ ≥ 0. The

functional form of the trading costs is explained in the following section.

Also, the information about signals and distribution functions related to abatement costs is

valuable to the regulator if there is a statistical dependence between the bene�ts and costs

of emissions reductions. The signals are jointly a�ected by uncertain abatement costs and

pollution damage, which should be taken into account when implementing the regulation.

Without proper information, the regulator is not able to derive the relevant expected marginal

damage function and hence optimal permit schedules. In this paper I assume that the

regulator does know the distribution functions of the unknown cost parameters and the

functional forms of �rms' abatement costs. However, the regulator does not know the �rms'

7I explain the result of a perfect permit market in Appendix 3.A.

101



signal realization.8

3.2.2 A�ne linear model

I follow previous literature (e.g. Weitzman 1974, 1978) and linearize the unknown marginal

functions around the �rst-best. As Weitzman (1978, p. 686) puts it:

�A linear approximation might be rationalized on one of two grounds. The amount

of uncertainty could be small enough to keep the range of output responses suf-

�ciently limited to justify a �rst-order approximation. Or, it might just happen

that total cost and bene�t functions are almost quadratic to begin with. At any

rate, the possibility of sharply characterizing an optimal solution makes the linear

case a natural preliminary to any more general analysis.�

In addition, I apply the a�ne information structure from Vives (2010, 2011). In this model all

random variables are normally distributed. Although fairly detailed, this is convenient when

calculating the conditional expectations of the payo�-relevant variables. The conditional

expectations of the value parameters are linear functions of the agents' information. With

linear marginal value functions and with linear strategies it is then possible to construct a

Linear Bayesian Demand Function Equilibrium for the model (see Vives 2011).

De�nition 3.2. The a�ne linear model is de�ned by equations (3.3) - (3.14), where the

distribution functions of the uncertain variables and the functional forms of abatement costs

and pollution damage are common knowledge.

Taking a second-order approximation of Ui (qi; θi) around the �rst-best gives the following

linear marginal value function (or the marginal abatement cost function):

ui (qi; θi) = θi − βqi. (3.3)

Cost parameter θi and slope β are such that θi ≡ U ′i (q?i ; θi) − U ′′i (q?i ; θi) q
?
i > 0 and β ≡

−U ′′i (q?i ; θi) ≥ 0. To simplify the model, the slope parameter is assumed to be constant and

common knowledge to all �rms and to the regulator. As noted already, the cost param-

eters are uncertain, but they are drawn from the same prior distribution, θi ∼ N
(
θ̄, σ2

θ

)
.

Moreover, the cost parameters are symmetrically correlated between �rms with a covariance,

cov [θi, θj] = ρσ2
θ , where only positive correlations are assumed, i.e. ρ > 0. Thus the average

8Cases where the distribution functions of the unknown parameters, the performance of the permit market
and the functional forms of abatement costs are unknown to the regulator are left for future work.
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cost parameter θm = 1
n

n∑
i=1

θi is normally distributed with an expected value E [θm] = θ̄ and

a variance var [θm] = 1
n

(1 + (n− 1) ρ)σ2
θ .

At the initial time point t0, each �rm receives a noisy signal of its own cost parameter, si = θi+

εi. The noise terms are identically and independently distributed around zero, εi ∼ N (0, σ2
ε).

The average signal is denoted by sm = 1
n

n∑
i=1

si. Its distribution has an expected value

E [sm] = θ̄ and a variance var [sm] = 1
n

(σ2
ε + (1 + (n− 1) ρ)σ2

θ).
9 The expected marginal

values are interdependent and I thus assume that σ2
ε > 0 and 0 < ρ < 1. 10

Initially �rms can condition their cost parameters only on their own signals. However, given

the structure of the model and given that the Vickrey auction is incentive compatible (Def-

inition 3.1), the clearing price of the auction reveals the average signal sm. In other words,

the clearing price p is su�cient statistics for sm and E [θi| sm] is informationally equivalent

to E [θi| p]. I explain the procedure later in more detail (see also Chapter 2 of this thesis and

Vives 2011). Furthermore, due to the symmetric correlation between �rms' cost parameters,

we may also write E [θi| s] = E [θi| sm] = E [θi| p]. Thus �rms are able to update their beliefs

about their own cost parameters conditional on information from the auction. The expected

value of θi conditional on signal si and the clearing price of the Vickrey auction (or the

average signal sm, or the whole signal vector s) writes as11

E [θi| s] = Aθ̄ +Bsi + Cnsm, (3.4)

where

A =
σ2
ε

σ2
ε + (1 + (n− 1) ρ)σ2

θ

B =
(1− ρ)σ2

θ

σ2
ε + (1− ρ)σ2

θ

C =
ρσ2

θσ
2
ε

(σ2
ε + (1− ρ)σ2

θ) (σ2
ε + (1 + (n− 1) ρ)σ2

θ)
.

The variance of θi conditional on s is

var [θi| s] = (B + C)σ2
ε . (3.5)

9Note also that var [sm] = cov [si, sm].
10The model would be one with independent private values if ρ = 0. The pure common values case is when

cost parameters are perfectly correlated and thus ρ = 1.
11See Appendix 2.A and e.g. DeGroot (1970). The expected value of θi conditional only on signal si is

E [θi| si] =
σ2
ε

σ2
ε+σ

2
θ
θ̄ +

σ2
θ

σ2
ε+σ

2
θ
si. Note also that A+B + nC = 1 and thus 1−A = B + nC.
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From (3.4) the conditional expected value and the variance of the average cost parameter are

written as, respectively,

E [θm| s] = θ̄ + (1− A)
(
sm − θ̄

)
, (3.6)

var [θm| s] = A · var [θm] = (B + nC)
1

n
σ2
ε . (3.7)

I denote the remaining uncertainty of �rm i's cost parameter by εsi = θi − E [θi| s], which

has a normal distribution, i.e. εsi ∼ N (0, (B + C)σ2
ε). The covariance between ε

s
i and ε

s
j is

cov
[
εsi , ε

s
j

]
= Cσ2

ε . Respectively, the distribution of the remaining aggregate uncertainty, i.e.

nεsm =
∑n

i=1 ε
s
i , has parameters nεsm ∼ N (0, (B + nC)nσ2

ε).

From (3.3) and (3.4) the expected marginal value function conditional on s is written as

vi (qi; s) ≡ E [ui (qi; θi)| si, s−i] . (3.8)

= Aθ̄ +Bsi + Cnsm − βqi.

Respectively, the damage function is also approximated around the �rst-best. The �rst-order

linear approximation of the marginal damage function is written as

MDF (Q; γ) = γ + δQ, (3.9)

where slope δ ≡ DF ′′ (Q?; γ) ≥ 0 is common knowledge. The damage parameter γ ≡
DF ′ (Q?; γ)−DF ′′ (Q?; γ)Q? is, however, uncertain. It is a draw from the distribution with

parameters γ ∼ N(γ̄, σ2
γ). Furthermore, I allow γ to be correlated with θm and I denote

the covariance by cov [γ, θm] = σγθ. Using these, the expected marginal damage function

conditional on the sum of all signals nsm =
n∑
i=1

si is

y (Q; s) ≡ E [MDF (Q; γ)| s] (3.10)

= γ̄ + nZ
(
sm − θ̄

)
+ δQ,

where E [γ| s] = γ̄ + nZ
(
sm − θ̄

)
and

Z =
cov [γ, nsm]

var [nsm]
=

σγθ
σ2
ε + (1 + (n− 1) ρ)σ2

θ

. (3.11)

I assume that the true damage parameter remains uncertain in the model. The uncertainty

related to the damage parameter conditional on s is εsγ = γ− γ̄−Z
(
nsm − nθ̄

)
. Furthermore,
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the variance of γ conditional on s is

var [γ| s] = var
[
εsγ
]

= σ2
γ − nZσγθ, (3.12)

and the conditional covariance between the average cost and damage parameters is simply

cov [γ, θm| s] = Aσγθ. (3.13)

I also assume that the marginal trading cost function is linear:

MTC (∆qi) = ω∆qi, (3.14)

where MTC (∆qi) = TC ′ (∆qi) and ω denotes the coe�cient of market performance. For

simplicity, I assume that ω is common knowledge and exogenous to the other parameters of

the model. Note that the assumption about the linear and increasing marginal trading costs

is just a simpli�cation. For instance, Stavins (1995) discusses transaction costs in tradeable

permit markets with either an increasing, decreasing or constant marginal transaction cost

function. However, to my understanding, using a trading cost function with decreasing or

constant marginal trading costs would not change the results qualitatively.

Now, given this structure, the pollution of �rm i in the �rst-best is given by q?i = 1
β

(θi − p?),
where p? is the �rst-best price:

p? =
δθm + β

n
γ

β
n

+ δ
. (3.15)

Furthermore, the welfare maximizing pollution level may write

Q? =
θm − γ
β
n

+ δ
. (3.16)

Moreover, the second-best regulation minimizes the following linear approximation of the

expected deadweight loss equation:

min
r
E [DWLr] = E

[
n∑
i=1

{ˆ q?i

qi,r

ui (x; θi) dx

}
−
ˆ Q?

Qr

MDF (X; γ) dX

]
(3.17)

≈ E

[
n∑
i

θi (q
?
i − qi,r)−

β

2

n∑
i

(
q?2i − q2

i,r

)
− γ (Q? −Qr)−

δ

2

(
Q?2 −Q2

r

)]
.

This problem is a linearized version of (3.2).
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The main objective of this paper is to derive conditions in which the information mechanism

of the two-stage regulation is incentive compatible. If this is the case, the regulator learns

the �rms' private information and is able to provide an ex-post e�cient allocation of permits

after the auction. The ex-post e�cient allocation, conditional on the revelation of signals,

is denoted by qe (s) = (qe1 (s) , . . . , qen (s)) ≡ E [q?| s]. I show in Proposition 3.1 that given

the a�ne linear model, the information mechanism is incentive compatible whenever the

correlation between emissions reduction bene�ts and costs is not too high. More precisely,

the IC condition is satis�ed if

−nδ
β
≤ σγθ
var [θm]

≤ 1. (3.18)

Particularly, the latter inequality σγθ
var[θm]

≤ 1 ensures that the aggregate quantity rule of the

�rst-stage auction is weakly increasing in each bidder's signal. Note that nZ ≤ 1 − A is

equivalent to σγθ
var[θm]

≤ 1. Moreover, the former inequality −nδ
β
≤ σγθ

var[θm]
guarantees that

the optimal permit supply schedules of the second-stage regulation are weakly increasing in

permit purchases. This, on the other hand, is equivalent to −nδ
β

(1− A) ≤ nZ.

I solve the problem backwards. In the next section, I derive the optimal permit supply

schedules given the information the regulator has at the time of implementing the non-

constant quantity regulation. I also examine the value of �rms' private information to the

regulator in di�erent information structures and permit market conditions. In Section 3.4,

I then describe the Vickrey payment rule, which gives incentives to �rms to reveal their

expected values to the regulator in the information stage.

3.3 Regulation stage

In this section, I derive the second-best regulation in the second stage given the information

the regulator has. The regulator's information parameter is denoted by I. In particular,

I = 0 denotes that the regulator knows only the prior information. Then the regulation is

implemented in the absence of the private information of �rms. In contrast, if I = s, the

regulator has complete information about signal vector s and is able to implement the ex-post

e�cient allocation of permits at the beginning of the regulation period. Following Roberts

and Spence (1976; later RS), Weitzman (1978; later W) and Yates (2012), I assume that the

regulator uses the following linear permit schedules in the regulation stage:

Ti (qi; I) = p̄ (I) + τ (qi − q̄i(I)) . (3.19)
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The price p̄ (I) = E [p?| I] denotes the expected �rst-best price and q̄i(I) = E [q?i | I] the

expected �rst-best allocation of permits to �rm i conditional on information I. The slope of

the permit supply schedule is τ . Weitzman (1978) uses general tax functions but the optimal

schedules are linear in his model due to the linearized system, but also due to regularity

assumptions about the distributions of the random variables. In contrast, Yates (2012) does

not make any assumptions about distributions of uncertain parameters, but he restricts his

analysis to linear schedules. Due to the linearized system and normal distributions of the

random variables, the linear schedules are optimal in this model. With knowledge of prior

information only, the expected �rst-best price is

p̄ (0) =
nδθ̄ + βγ̄

β + nδ
. (3.20)

Respectively, if I = s, the expected �rst-best price is

p̄ (s) =
nδθ̄m (s) + βγ̄ (s)

β + nδ
(3.21)

= p̄ (0) +
nδ (1− A) + βnZ

β + nδ

(
sm − θ̄

)
.

The last line comes from inserting θ̄m (s) = E [θm| s] from (3.6) and γ̄ (s) = E [γ| s] from

(3.10). The initial allocation is given by q̄i (I) = 1
β

(
θ̄i (I)− p̄ (I)

)
, where θ̄i (I) = E [θi| I].

Without any information about signals, θ̄i (0) = θ̄ for all i and the regulator allocates an

equal amount of permits to each �rm:

q̄i (0) = q̄ =
θ̄ − γ̄
β + nδ

. (3.22)

On the other hand, when the regulator knows the signal vector, θ̄i (s) = Aθ̄ + Bsi + Cnsm

from (3.4), the regulator can implement an ex-post e�cient allocation:

q̄i (s) = qei (s) (3.23)

= q̄ +

(
1− A− nZ
β + nδ

)(
sm − θ̄

)
︸ ︷︷ ︸

q̄m(s)

+
B

β
(si − sm) ,

where q̄m (s) = 1
n
Q̄ (s) is the allocation of the average �rm indexed with m and receiving

signal sm. Firm i may purchase (or sell back) permits from (to) the regulator according to

the price schedule (3.19). The net purchases of �rm i from the regulator are denoted by

hi. This is a sum of the initial allocation q̄i(I) and transactions with the regulator in the
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regulation period. In addition, �rms are allowed to trade permits with each other. I assume

full compliance. At the end of the regulation period each �rm holds an amount of permits

equal to its emissions in the regulation period. Firms report their emissions honestly to the

regulator. Hence, ∆qi = |qi − hi| ≥ 0 is �rm i's amount of trading in the permit market.

Firm i is a buyer of permits if qi > hi and a permit seller if hi > qi.12

The problem of the regulator is to �nd a slope τ that minimizes the expected deadweight loss

from (3.17). It has to take into account the reactions of �rms. Firm i maximizes its pro�ts

with respect to pollution qi and purchases from the regulator hi given the supply schedule

Ti (qi; I) and the market performance of the secondary market de�ned by ω:

max
qi,hi

πi,τ (qi, hi; θi) =

ˆ qi

q̄i(I)

ui (x; θi) dx−
ˆ hi

q̄i(I)

Ti (x; I) dx (3.24)

+

ˆ ∆qi

0

{pτ − ωx} dx1{hi>qi} −
ˆ ∆qi

0

{pτ + ωx} dx1{qi>hi},

where pτ is the equilibrium price of the secondary market and 1 is the indicator function with

a value of 1 if its argument is true and otherwise 0. The �rst-order conditions with respect

to pollution qi and permit purchases hi are given by, respectively,

dπi,τ (qi, hi; θi)

dqi
= ui (qi; θi)− pτ + ω (hi − qi) = 0 (3.25)

and
dπi,τ (qi, hi; θi)

dhi
= −Ti (hi; I) + pτ − ω (hi − qi) = 0. (3.26)

Let qi,τ and hi,τ denote the pro�t-maximizing outcomes. From the �rst-order conditions it is

easy to see that ui (qi,τ ; θi) = Ti (hi,τ ; I), which implies

τhi,τ + βqi,τ = (β + τ) q̄i (I) +
(
θi − θ̄i (I)

)
. (3.27)

Summing (3.27) from 1 to n and using the market-clearing condition
∑n

i=1 hi,τ =
∑n

i=1 qi,τ =

Qτ gives the total level of pollution:

Qτ = Q̄ (I) +

(
n

β + τ

)(
θm − θ̄m (I)

)
. (3.28)

12Note that if τ = 0 the permit supply schedule reduces to constant tax Ti = p̄ (I). On the other hand,
if τ →∞, the regulation is a constant quantity regulation. Then, in the beginning of the regulation period,
the regulator allocates pollution permits to �rms according to q̄ (I) = (q̄1 (I) , . . . , q̄n (I)) and lets �rms trade
permits freely in the secondary market. These two constant regulations following the information mechanism
are examined in Chapter 2.
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The average �rm (with cost parameter θm) does not trade in the equilibrium:

qm,τ = hm,τ = q̄m (I) +

(
1

β + τ

)(
θm − θ̄m (I)

)
. (3.29)

Plugging (3.29) into the �rst-order condition pτ = um (qm,τ ; θm) gives the equilibrium price:

pτ = p̄ (I) +

(
τ

β + τ

)(
θm − θ̄m (I)

)
. (3.30)

Moreover, using (3.25), (3.27) and (3.30) the equilibrium outcomes of �rm i are

qi,τ = q̄i (I) +

(
1

βτ + ωβ + ωτ

){
(τ + ω)

(
θi − θ̄i (I)

)
−
(

τ 2

β + τ

)(
θm − θ̄m (I)

)}
, (3.31)

and

hi,τ = q̄i (I) +

(
1

βτ + βω + τω

){
ω
(
θi − θ̄i (I)

)
+

(
βτ

β + τ

)(
θm − θ̄m (I)

)}
. (3.32)

Together these imply

qi,τ − hi,τ =

(
τ

βτ + ωβ + ωτ

){
(θi − θm)−

(
θ̄i (I)− θ̄m (I)

)}
. (3.33)

Let us assume that τ ≥ 0. Firm i is then on the demand side of the permit market (qi,τ > hi,τ ),

if the positive deviation of �rm i's cost parameter from the average value, i.e. θi − θm, is

greater than the di�erence between the expected cost parameter of �rm i and the expected

average cost parameter, i.e. θ̄i (I) − θ̄m (I). Hence, even if the cost parameter of �rm i

decreases from the expected value, �rm i may be a demander of permits in the secondary

market if, on average, the cost parameters decrease even more.

Figure 3.1 describes the equilibrium outcomes in a three-�rm market (�rms j, m and k)

in di�erent market conditions, where θj < θm < θk with θm = 1
2

(θj + θk). Figure 3.1a

presents the extreme cases of a perfect (ω = 0) and collapsed (ω → ∞) permit market,

whereas Figure 3.1b presents the case where 0 < ω < ∞. Suppose, for simplicity, that the

regulator has no information about �rms' signals and thus I = 0.13 When the regulator

has only prior information available, it implements the same permit supply schedule for each

�rm, i.e. Ti (qi) = p̄ + τ (qi − q̄i) for all i = j,m, k. In Figure 3.1, the slope of the permit

supply schedule τ is �xed in di�erent cases of ω. Respectively, from the regulator's point of

13To simplify notation, I have omitted the argument of the information parameter I = 0 in Figure 3.1 and
in what follows. The market performance ω ∈ (0,∞) is denoted with a superscript.
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view, each �rm has the same expected marginal value function vi (qi). I have also assumed

that θm > θ̄ and, hence, the equilibrium price is greater than the expected �rst-best price,

pτ > p̄. Due to symmetry, market frictions do not a�ect the equilibrium price, but they

reduce trading in the market.

Suppose �rst that the permit market is perfect (ω = 0, Figure 3.1a). Then all �rms purchase

an equal amount of permits from the regulator h0
i,τ . Furthermore, in the absence of permit

market trade frictions, the market mechanism provides a cost-e�cient solution where pτ =

ui
(
q0
i,τ

)
= Ti

(
h0
i,τ

)
for all i. The average �rm m does not trade in the permit market,

whereas �rm k buys ∆qk = q0
k,τ −h0

i,τ = h0
i,τ − q0

j,τ = ∆qj permits from �rm j. In equilibrium,

purchasing one more unit from the regulator or reducing one more unit of pollution is more

costly for every �rm than the bene�ts it receives by selling one more permit in the market.

The problem of the regulator is then only to care about the aggregate e�ciency, because the

permit market trading equalizes the marginal abatement costs of �rms.

With positive trading costs (ω > 0, Figure 3.1b), each �rm's bene�ts of purchasing permits

from the regulator and selling them to other �rms is reduced. Hence, the seller of permits

in the secondary market, i.e. �rm j, reduces its purchases from the regulator to hωj,τ < h0
i,τ .

Respectively, �rm k buys less permits from the market and more units from the regulator

hωk,τ > h0
i,τ . Hence, trading between �rms reduces as ω increases. In equilibrium, the marginal

abatement cost function is equal to the marginal costs of purchasing permits from the regu-

lator, i.e. ui
(
qωi,τ
)

= Ti
(
hωi,τ
)
. Moreover, for the permit buyer (�rm k), these must be equal

to the marginal cost of purchasing permits from the market, i.e. pτ + ω∆qk. For the permit

seller (�rm j), on the other hand, uj
(
qωj,τ
)

= Tj
(
hωj,τ
)

= pτ − ω∆qk. Thus the equilibrium is

not cost-e�cient, while uj
(
qωj,τ
)
< um (qm,τ ) < uk

(
qωk,τ
)
.

In another extreme case, the permit market is totally collapsed (ω → ∞, Figure 3.1a) and

every �rm purchases all the permits it needs from the regulator h∞i,τ = q∞i,τ . This increases

the deviation of equilibrium pollution from the cost-e�cient solution.

Hence, the regulator has to take into account the expected deviations when choosing the

permit schedule functions. This is done by lowering the slope of the permit schedules when

ω increases. However, at the same time the aggregate pollution becomes more price-sensitive

and the risks of high environmental damage increase. Hence there is a trade-o� between

cost-e�ciency and aggregate e�ciency when the permit market is imperfect.

Using qi,τ from (3.31) and Qτ from (3.28) and plugging these into (3.17) gives the expected

deadweight loss of the non-constant regulation de�ned in equation (3.19). I derive the ex-
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Figure 3.1: Equilibrium of the regulation stage.
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pected deadweight loss in Appendix 3.B. It is written as

E [DWLτ (I, ω)] =
1

2

(
1

β
n

+ δ

){(
nδ − τ
β + τ

)2

var [θm| I] + var [γ| I]

}
(3.34)

+

(
1

β
n

+ δ

)(
nδ − τ
β + τ

)
cov [γ, θm| I]

+
n

2β

(
τ

βτ
ω

+ β + τ

)2

{var [θi| I]− var [θm| I]} .

The optimal τ , given information I and market performance ω, solves d(E[DWLτ (I,ω)])
dτ

= 0 or,

respectively, the following equation:

fτ (τ | I, ω) ≡
(
nδ − τ
β + τ

)
var [θm| I] + cov [γ, θm| I] (3.35)

−

(
τ (β + τ)2(
βτ
ω

+ β + τ
)3

)
(var [θi| I]− var [θm| I]) = 0.

The optimal slope is denoted by τ (I, ω) ≡ (τ : fτ (τ | I, ω) = 0). Note that, when I = s,

equation (3.35) yields

fτ,s (τ) ≡ fτ (τ | I = s, ω) (3.36)

=

(
nδ − τ
β + τ

)
(1− A) + nZ −

(
τ (β + τ)2(
βτ
ω

+ β + τ
)3

)
(n− 1)B = 0.

I use equation (3.36) when I later derive the main results of the paper. However, the main

results of this section are provided in the following four lemmas.

Lemma 3.1. Given the a�ne linear model, the slopes of the permit supply schedules in the

Weitzman (1978) and Roberts and Spence (1976) models, respectively τW and τRS, are the

lower and upper bounds of the permit supply schedule slope τ (I, ω), when ω moves from 0

to ∞. Given that −nδ
β
≤ σγθ

var[θm]
≤ 1, Weitzman's non-constant tax schedule provides the

lower bound of the slope, 0 ≤ τW (I) ≤ τ (I, ω) ≤ τRS (I). If
σγθ

var[θm]
< −nδ

β
, Weitzman's non-

constant tax schedule provides the upper bound of the slope, τRS (I) ≤ τ (I, ω) ≤ τW (I) < 0.

Proof. Suppose �rst that the resale market performs perfectly and thus ω = 0. Then the
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regulator chooses τ (I, 0) ≡ τRS (I) such that

fτ (τ | I, ω = 0) =

(
nδ − τ
β + τ

)
var [θm| I] + cov [γ, θm| I] = 0

⇒ τRS (I) =
β · cov [γ, θm| I] + nδ · var [θm| I]

var [θm| I]− cov [γ, θm| I]
.

This is the optimal slope of the RS non-constant permit supply model when pollution damage

and abatement costs are correlated. When σγθ = 0, the slope is τRS = nδ. On the other

hand, when the resale market is collapsed or absent (ω →∞), we get for τ (I,∞) ≡ τW (I):

fτ (τ | I, ω →∞) =

(
nδ − τ
β + τ

)
var [θm| I] + cov [γ, θm| I]

−
(

τ

β + τ

)
(var [θi| I]− var [θm| I]) = 0

⇒ τW (I) =
β · cov [γ, θm| I] + nδ · var [θm| I]

var [θi| I]− cov [γ, θm| I]
.

This is equal to the slope of Weitzman's (1978) non-constant tax regulation. Note that

var [θm| s] = A · var [θm] and cov [γ, θm| s] = A · cov [γ, θm| 0]. While var [θi| I] ≥ var [θm| I],

it always holds that
∣∣τW (I)

∣∣ ≤ ∣∣τRS (I)
∣∣, when σγθ

var[θm]
≤ 1. These prove the latter part of

the Lemma. �

The cases where σγθ
var[θm]

> 1 are not considered in Lemma 3.1. However, when var [θm| I] <

cov [γ, θm| I] < var [θi| I] the non-constant taxes are increasing (τW (I) > 0) and the permit

supply schedules of the RS model are decreasing (τRS (I) < 0). When cov [γ, θm| I] >

var [θi| I] all these functions are decreasing such that τW (I) < τRS (I) < −β.

Lemma 3.2. Given the a�ne linear model and a perfect permit market, the regulator does

not need the private information of �rms in order to implement the second-best regulation.

Proof. Using again var [θm| s] = A · var [θm] and cov [γ, θm| s] = A · cov [γ, θm| 0] gives

τRS (s) =
βAσγθ + nδA · var [θm]

A · var [θm]− Aσγθ
=
βσγθ + nδ · var [θm]

var [θm]− σγθ
= τRS (0) . (3.37)

Denoting τRS (I) = τRS we get

nδ − τRS

β + τRS
=

−nσγθ
(1 + (n− 1) ρ)σ2

θ

= − nZ

1− A
.

Furthermore, given a perfect secondary market (ω = 0), the deadweight loss depends on the

price di�erence pτ − p? (see equation 3.61 in Appendix 3.B). Hence, if this price di�erence is
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independent of information I, the regulator is able to implement the second-best regulation

without the information I = s. Thus, in order to show that DWLτ (s, 0) = DWLτ (0, 0)

when using τ = τRS, it remains to show that pτ (s) = pτ (0) . From (3.30) we get

pτ (s) = p̄ (s) +

(
τRS

β + τRS

)(
θm − θ̄m (s)

)
= p̄ (0) +

(
τRS

β + τRS

)(
θm − θ̄

)
︸ ︷︷ ︸

pτ (0)

+

(
nδ (1− A) + βnZ

β + nδ
−
(

τRS

β + τRS

)
(1− A)

)(
sm − θ̄

)
= pτ (0) +

(
1

1 + nδ
β

){(
nδ − τRS

β + τRS

)
(1− A) + nZ

}
︸ ︷︷ ︸

=0

(
sm − θ̄

)
.�

Lemma 3.3. Given the a�ne linear model, the expected deadweight loss is decreasing in the

slopes of the marginal damage function δ and the aggregate abatement cost function β
n
, and

increasing in the conditional variance of the damage parameter var [γ| θm], when the permit

market is perfect and the regulator uses permit schedules from (3.19) with τ = τRS.

Proof. Plugging nδ−τRS
β+τRS

= − nZ
1−A into (3.34) when ω = 0 and, for instance, I = 0 the expected

deadweight loss reduces to

E [DWLτ (0, 0)] =
1

2

(
1

β
n

+ δ

){(
nδ − τRS

β + τRS

)2

var [θm| 0] + var [γ| 0]

}

+

(
1

β
n

+ δ

)(
nδ − τRS

β + τRS

)
cov [γ, θm| 0]

=
1

2

(
1

β
n

+ δ

){
σ2
γ −

(σγθ)
2

1
n

(1 + (n− 1) ρ)σ2
θ

}

=
1

2

(
1

β
n

+ δ

)
var [γ| θm] .�

Lemma 3.3 implies that the correlation between emission reduction costs and bene�ts, whether

negative or positive, improves welfare when the permit market performs perfectly. The regu-

lator is able to use the private information of �rms, which reveals valuable information about

pollution damage and thus improves the outcome of the regulation.

Lemma 3.4. Given the a�ne linear model, the slopes of the optimal permit supply schedules

are not independent of information in the absence of a permit market.
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Proof. With non-constant taxes from the Weitzman (1978) model, we have

τW (0) =
βσγθ + nδ · var [θm]

σ2
θ − σγθ

. (3.38)

Note that var[ θi|s]
A

= var [θm] + (n− 1)B · var [sm] , and thus when −nδ
β
<

σγθ
var[θm]

< 1,

τW (s) =
βσγθ + nδ · var [θm]

(n− 1)B · var [sm] + var [θm]− σγθ
(3.39)

=
βσγθ + nδ · var [θm]

(1 + (n− 1) ρB)σ2
θ − σγθ

< τW (0) .�

Lemma 3.4 implies that E [DWLτ (s,∞)] < E [DWLτ (0,∞)]. More generally, the slopes

of the optimal permit supply schedules are not independent of information when ω > 0,

which further implies E [DWLτ (s, ω)] < E [DWLτ (0, ω)] whenever ρ, σ2
θ > 0. See Appendix

3.D for the numerical simulations. Finally, if there was only one �rm (n = 1), the slope of

the Weitzman non-constant tax regulation would coincide with the slope of the Roberts and

Spence non-constant quantity regulation.

3.4 Information stage

Now I turn to the auction mechanism of the information stage.14 I consider a generalized

VCG mechanism (or Vickrey auction). With interdependent values, �nding a mechanism

that is able to implement e�cient allocation may not be possible (Jehiel and Moldovanu

2001). However, Ausubel and Cramton (2004) prove in their Theorem 1 that for any value

functions satisfying continuity, value monotonicity and the single-crossing property, a Vickrey

auction with reserve pricing has truthful bidding as an ex-post equilibrium. This holds for

any monotonic aggregate quantity rule Q̄ (s) and associated monotonic e�cient assignment

rule qei (s).

In addition, even if an equilibrium in an auction without resale is typically not an equilibrium

in a auction followed by a resale market, the resale market does not distort the equilibrium of

a Vickrey auction. In particular, Ausubel and Cramton state in their Theorem 2 that if the

Vickrey auction with reserve pricing is followed by any resale process that is coalitionally-

rational against individual bidders, truthful bidding remains an ex-post equilibrium.

14In Chapter 2 I use the same information structure and auction mechanism and explain the Vickrey
auction in more detail.
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In this section, I will derive conditions in which it is optimal for a �rm to bid sincerely in

a Vickrey auction, when every other bidder is bidding sincerely and when the auction is

followed by the regulation stage.

3.4.1 Vickrey auction

I model the auction using the indirect interpretation of the generalized VCG mechanism

introduced by Montero (2008). Montero applied the auction in a pure private values envi-

ronment, whereas the values are interdependent in this model. Nevertheless, the rules of the

auction mechanism are similar. Let us assume for a moment that every �rm bids sincerely.

Hence, each �rm is a price-taker in the auction. Given this assumption I characterize the

auction equilibrium strategies of �rms. Then I examine whether an individual �rm has in-

centives to deviate from the strategy of sincere bidding, given that every other �rm is bidding

sincerely. This gives the conditions of incentive compatibility.

Before describing the auction mechanism, �rst note that the expected marginal abatement

cost function vi (qi; s) from (3.8) satis�es continuity, value monotonicity and the single-

crossing property. Secondly, in this model the aggregate quantity rule may be written as

Q̄ (s) =

y−1
(
v−i
(
qe−i (s) ; s

)
; s
)
, if qei (s) = 0

y−1 (vi (q
e
i (s) ; s) ; s) , if qei (s) > 0.

(3.40)

According to the aggregate quantity rule (3.40), the price-elastic supply of permits is thus

QS (p; s) = y−1 (p; s) (3.41)

=
1

δ

(
p− γ̄ − nZ

(
sm − θ̄

))
.

Given that the Vickrey auction is ex-post e�cient, it must hold that the clearing price is

given by pv (s) = p̄ (s) = p̄ (0) +
(
δ(1−A)+βZ

β
n

+δ

) (
sm − θ̄

)
. From this it is easy to see that the

aggregate quantity rule Q̄ (s) is weakly increasing in each bidder's signal if

dpv (s)

dsi
≥ Z ⇒ var [θm] ≥ σγθ.

This gives the second inequality of (3.18).

In the auction, �rms report continuous and decreasing bid functionsDi (p; si) to the regulator.

The inverse bid function is written Pi (qi; si) ≡ D−1
i (qi; si). The regulator clears the auction

and determines the clearing price pv at which total demand equals supply. Winning bids
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are all bids equal or above the clearing price. Total demand in the auction is D (p; s) =

Di (p; si) +D−i (p; s−i) where D−i (p; s−i) =
∑

j 6=iDj (p; sj) is the aggregate demand of every

other bidder but bidder i.

The �nal price �rms have to pay for the units received is not the clearing price. In a private

values case, the marginal payment is the opportunity cost of each particular unit won by

bidder i. I explain later how of the Vickrey price in the private values model di�ers from the

model of interdependent values. Montero (2008) derives the Vickrey pricing rule as follows.

In addition to the clearing price and the allocation of permits, the regulator determines

paybacks for each �rm. The share of the paybacks is de�ned by

αi = 1−
´ qi

0
RS−1

i (x; s−i) dx

RS−1
i (qi; s−i) qi

, (3.42)

where RSi (p; s−i) = QS (p; s)−D−i (p; s−i) is the residual supply for bidder i. While pv (s) =

RS−1
i (qi; s−i) in the equilibrium, the total payment of bidder i in the auction writes as

Ri,v = (1− αi) pv (s) qi (3.43)

=

ˆ qi

0

RS−1
i (x; s−i) dx.

The payback mechanism induces bidders to bid with their expected marginal value functions,

conditional on the aggregate information. The payback function of �rm i is determined by

the strategies of other bidders and thus the Vickrey price is equal to the residual supply

function. The clearing price of the auction contains the information of other bidders' signals.

Given the linear a�ne model, �rms utilize linear strategies de�ned by

Di (p; si) = a+ bsi − cp, (3.44)

where a, b and c are some positive constants. Thus the aggregate demand in the auction is

D (p; s) = na+ nbsm − ncp. (3.45)

Furthermore, using (3.41) and (3.45) yields

nsm =

(
1

b+ Z
δ

)(
1

δ

(
p− γ̄ + Znθ̄

)
− na+ ncp

)
. (3.46)

With the a�ne linear model, the clearing price is su�cient statistics for nsm and hence

E [θi|s] is informationally equivalent to E [θi|si, p] (Vives, 2011). The �rst-order condition in
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the price-taking auction equilibrium is

E [θi|si, p]− βqi − p = 0. (3.47)

Furthermore, plugging equation (3.4) into the �rst-order equation (3.47) and solving for qi
yields the equilibrium allocation. This must be equal to Di(p; si) = a+ bsi− cp and we hence

get

a+ bsi − cp =
1

β

{
Aθ̄ +Bsi + Cnsm − p

}
.

Plugging in nsm from (3.46) and solving this three equation system15, gives the linear

Bayesian demand function equilibrium strategy Di(p; si) = a+ bsi − cp, where

a =
1

β

(
1

B + nC + β
δ
Z

){(
AB +

β

δ
(A+ nC)Z

)
θ̄ − β

δ
Cγ̄

}
(3.48)

b =
1

β
B (3.49)

c =
1

β

(
B − β

δ
C + β

δ
Z

B + nC + β
δ
Z

)
. (3.50)

Using (3.41) and (3.45) the clearing price is

pv (s) =
nδa+ γ̄ + nδbθ̄ + n (δb+ Z)

(
sm − θ̄

)
nδc+ 1

. (3.51)

Plugging (3.48) - (3.50) into (3.51), it is easy to show that pv (s) = p̄ (s). Also, Di(pv (s) ; si) =

q̄i(s) = qei (s) where p̄ (s) and qei (s) are given by (3.21) and (3.23).

Note that with interdependent values the total payment of �rm i in the Vickrey auction is

not the full externality cost, in contrast to the pure private values case. With pure private

values the total payment is the sum of the pollution externality of increased pollution and the

pecuniary externality, i.e. the value to other bidders of those units which are not assigned to

them due to �rm i's participation (Montero 2008). With interdependent values the payment

does not include the informational externality of signal si to other bidders' values and to

pollution damage (see Chapter 2, Figure 2.1).

15See the derivation in Chapter 2.
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3.4.2 Incentive compatibility of the two-stage regulation

Next I explore the question of the incentive compatibility of a Vickrey auction followed by

the regulation stage. First note that the auction payment Ri,v (s) =
´ q̄i(s)

0
RS−1

i (x; s−i) dx

depends only on si through its end point q̄i (s). Let s̃−i = 1
n−1

∑
j 6=i sj denote the average

signal of every other �rm but �rm i. Consider for a moment that �rm i receives a signal ŝi.

Given that every other bidder is bidding sincerely, it is then easy to derive the clearing price

pv as a function of ŝ = (ŝi, s−i) from (3.51):

pv (ŝ) =
nδa+ γ̄ − nZθ̄ + (n− 1) (δb+ Z) s̃−i

nδc+ 1
+
δb+ Z

nδc+ 1
ŝi, (3.52)

where δb+Z
nδc+1

= δ(1−A)+βZ
β+nδ

. In the auction equilibrium

q̄i (ŝi, s−i) = QS (pv (ŝ) ; ŝi, s−i)−D−i (pv (ŝ) ; s−i) ,

and we may further write

ŝi (s−i, qi) =

(
ncδ + 1

(ncδ + 1) b− c (bδ + Z)

)
(3.53)

×
{
−a+ cγ̄ − ncZθ̄ + c (n− 1) (bδ + Z) s̃−i

ncδ + 1
+ qi

}
.

Hence, while the inverse residual supply function goes through the equilibrium point (pv (s) , qei (s)),

it can be written as

RS−1
i (qi; s−i) = pv (s) + τv (qi − qei (s)) . (3.54)

Thus, plugging (3.53) into (3.52) gives the slope:

τv =
δb+ Z

(ncδ + 1) b− c (δb+ Z)
(3.55)

=
βσγθ + nδ · var [θm](

1 + nδ
β

)
(n− 1)B · var [sm] + var [θm]− σγθ

.

Note that in the absence of the second stage, sincere bidding in the Vickrey auction would

be incentive compatible if τv ≥ −β. This holds whenever(
1 +

nδ

β

)
(n− 1)B · var [sm] + var [θm]− σγθ ≥ 0. (3.56)

Note also that if there was only one �rm (n = 1), equation (3.56) reduces to σγθ
var[θm]

≤ 1. In
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that case the slope of the inverse (residual) supply function is equal to the slope of the Roberts

and Spence non-constant quantity regulation and, in fact, the information mechanism is not

needed. In that case the information mechanism coincides with the second-best regulation

in the regulation stage.

Now, suppose that �rm i bids according to signal s′i when its true signal is si, and, thus, �rm

i uses a deviation strategy Di (p; s
′
i, si).

16. The initial allocation of permits to �rm i, given

s′ = (s′i, s−i), is

q̄i (s
′) = a+ bs′i − cpv (s′) (3.57)

= qei (s)−
(
b− δb+ Z

nδ + 1
c

)
(si − s′i)

= qei (s)−


(

1 + nδ
β

)
(n− 1)B · var [sm] + var [θm]− σγθ

(β + nδ) var [sm]

 1

n
(si − s′i) .

Hence from (3.56), sincere bidding in a Vickrey auction without the regulation stage is incen-

tive compatible if the equilibrium allocation q̄i (s) is increasing in si. However, the condition
σγθ

var[θm]
≤ 1 gives a lowest upper bound for σγθ that guarantees the incentive compatibility of

the Vickrey auction also when the auction mechanism is followed by the secondary market.

Let πi,v (s′i; si, s−i) denote the pro�t of �rm i in the Vickrey auction when using the deviation

strategy Di (p; s
′
i, si). The loss in the Vickrey auction may thus be written as

Li (s
′
i; si, s−i) = πi,v (si; si, s−i)− πi,v (s′i; si, s−i) (3.58)

=

ˆ qei (s)

q̄i(s′)

{
vi (x; s)−RS−1

i (x; s−i)
}
dx.

From (3.24) the expected pro�t in the secondary market is

πi,τ (s′i; si, s−i) =

ˆ qi,τ (s′)

q̄i(s′)

vi (x; s) dx−
ˆ hi,τ (s′)

q̄i(s′)

Ti (x; s′) dx

+

ˆ ∆qi(s
′)

0

{pτ (s′)− ωx} dx1{hi,τ (s′)>qi,τ (s′)}

−
ˆ ∆qi(s

′)

0

{pτ (s′) + ωx} dx1{qi,τ (s′)>hi,τ (s′)},

where pτ (s′) is the expected equilibrium price of the permit market given the initial allocation

according to s′. Respectively, qi,τ (s′), hi,τ (s′) and ∆qi (s
′) = |qi,τ (s′)− hi,τ (s′)| are the

16Note that �rm i may use any bid function that goes through the point (pv (s′) , q̄i (s′)).
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corresponding expected equilibrium outcomes of the secondary market.

When all bidders bid sincerely in the Vickrey auction the allocation is ex-post e�cienct and

the expected pro�ts of �rm i in the secondary market are zero, πi,τ (si; si, s−i) = 0. Hence

the Vickrey auction in the �rst stage is incentive compatible if the loss from (3.58) is greater

than the expected pro�ts in the secondary market:

∆IC = πi,v (si; si, s−i) + πi,τ (si; si, s−i)− πi,v (s′i; si, s−i)− πi,τ (s′i; si, s−i) (3.59)

= Li (s
′
i; si, s−i)− πi,τ (s′i; si, s−i)

≥ 0.

Proposition 3.1. Given the a�ne linear model, the information mechanism of the two-

stage regulation is incentive compatible whenever the aggregate quantity rule of the �rst stage

auction is weakly increasing in each bidder's signal and the optimal permit supply schedules of

the second-stage regulation are weakly increasing in permit purchases, i.e. whenever −nδ
β
≤

σγθ
var[θm]

≤ 1.

Proof. See Appendix 3.C.

Suppose that −nδ
β
≤ σγθ

var[θm]
≤ 1 and �rm i uses a deviation strategy according to s′i < si

when every other �rm is bidding sincerely in the Vickrey auction. Then qi,τ (s′) > hi,τ (s′)

and the IC condition writes as

∆IC =

ˆ hi,τ (s′)

q̄i(s′)

{
Ti (x; s′)−RS−1

i (x; s−i)
}
dx︸ ︷︷ ︸

∆I
IC

(3.60)

+

ˆ qi,τ (s′)

hi,τ (s′)

{
pτ (s′) + ω (x− hi,τ (s′))−RS−1

i (x; s−i)
}
dx︸ ︷︷ ︸

∆II
IC

+

ˆ qei (s)

qi,τ (s′)

{
vi (x; s)−RS−1

i (x; s−i)
}
dx︸ ︷︷ ︸

∆III
IC

.

These terms are described in Figure 3.2. ∆I
IC denotes the excess payments for permits

which �rm i purchases from the regulator due to the deviation strategy. ∆I
IC is non-negative

for all s′i < si, because the permit supply schedule Ti (qi; s′) crosses the inverse residual

supply RS−1
i (qi; s−i) from below at q̄i (s′), when these functions are increasing and thus

when −nδ
β
≤ σγθ

var[θm]
≤ 1.
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Figure 3.2: Incentive compatibility of the Vickrey auction.

∆III
IC denotes the net loss of Vickrey payo�s due to the deviation strategy. When s′i < si,

the expected equilibrium pollution of �rm i after using the deviation strategy in the auction

qi,τ (s′) is lower than the ex-post e�cient level of pollution qei (s). ∆III
IC is non-negative for all

s′i < si, when −nδ
β
≤ σγθ

var[θm]
≤ 1.

Finally, (the negative of) ∆II
IC denotes the net gains from trading due to the deviation strat-

egy. However, the sign of ∆II
IC is not clear. When the permit market is perfect (ω = 0), it is

non-negative. When ω →∞, the limit value of ∆II
IC is zero. Hence, ∆IC ≥ 0 in both of these

extremes. When ω increases from zero, hi,τ (s′) increases but τ , pτ (s′), and qi,τ (s′) decreases.

This implies that ∆III
IC increases but ∆I

IC and ∆II
IC may either increase or decrease. From

Figure 3.2, the incentive constraint is non-negative if ∆I
IC + ∆III

IC + ∆IIa
IC ≥

∣∣∆IIb
IC

∣∣. Unfor-

tunately, I am not able to derive an analytical proof that ∆IC ≥ 0 for all ω ≥ 0. However,

applying some numerical simulations I show in Appendix 3.C that ∆IC ≥ 0 for all ω ≥ 0

when the regulator uses a two-stage regulation with a Vickrey auction in the information

stage and permit supply schedules Ti (qi; s) = p̄ (s)+ τ (qi − q̄i(s)) in the regulation stage and

whenever −nδ
β
≤ σγθ

var[θm]
≤ 1 holds.
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Suppose next that σγθ
var[θm]

< −nδ
β
. Then the regulator cannot be sure that a Vickrey auction

in the information stage followed by the regulation stage is incentive compatible. In this case

both Ti (qi; s
′) and RSi (qi; s−i) are decreasing functions and Ti (qi; s

′) has a steeper slope.

We thus have −β ≤ τ ≤ τv ≤ 0. In both extremes of market performance, i.e. when ω = 0

and when ω → ∞, the IC condition is negative (see Appendix 3.C). However, in Chapter

2 I show that if the regulator implements a constant price regulation in the second stage,

and thus sets τ = 0, the Vickrey auction is incentive compatible whenever σγθ
var[θm]

< −nδ
β
.

Moreover, the regulator could also set τ = τv, which guarantees incentive compatibility and

would improve the results of the constant price regulation.

Also when σγθ
var[θm]

> 1, the Vickrey auction is not incentive compatible even without a sec-

ondary market. However, at least when σγθ ≈ var [θm] and when the market performance is

not too bad (ω ≈ 0), the �rms' private information is not valuable to the regulator, because

the aggregate supply in the Vickrey auction is inelastic in sm. In that case the regulator

should apply a constant quantity regulation without any auction.

3.5 Conclusions

This paper considers a commons problem, which addresses two important issues. Hence,

in addition to the pollution externality, two other market failures exist. Firstly, trading in

pollution permits su�ers from frictions. Secondly, the information with regards to emis-

sion abatement costs is incomplete and distributed asymmetrically. To tackle these issues,

I have proposed a two-stage regulation of tradeable pollution permits. In the �rst stage

the regulator conducts an information mechanism. Applying a generalized Vickrey-Clarke-

Groves (VCG) mechanism, the regulator collects private information from regulated �rms

and allocates emission permits to the �rms. In the second stage, the regulator implements a

quantity regulation, where the non-constant permit supply schedules take into account the

frictions of the permit market and the private information of �rms. I have applied a linearized

model with an a�ne information structure. Given this structure, the marginal abatement

cost functions and the marginal damage function are linear functions, the conditional ex-

pectations are linear in information, and the slopes and distribution functions are common

knowledge. Also, pollution is assumed to be uniformly mixed and uncertain bene�ts and

costs of emissions reductions may be correlated. Given the a�ne linear model, I have shown

that in the information mechanism followed by the second-best regulation, sincere bidding

satis�es incentive compatibility conditions whenever the correlation between emissions re-

duction bene�ts and costs is not too high. Moreover, depending on the performance of the
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permit market, the slopes of the permit supply functions in the second stage are between

the slopes of the Weitzman (1978) non-constant tax schedules and the Roberts and Spence

(1976) non-constant quantity regulation permit supply schedules.

The model builds on the symmetric linear structure. A natural next step is to ask how much

the assumptions of the linear a�ne model could be relaxed in order for the results of this

paper to continue to hold? In what conditions is the regulator independent of the private

information of �rms when the permit market is perfect? What are the general incentive

compatibility conditions of the Vickrey auction followed by the regulation stage? Might there

be another, optimal mechanism in the environment I consider? How would the two-stage

regulation change if the distribution functions of the unknown parameters, the performance

of the permit market and the functional forms of the abatement costs were unknown to the

regulator? These issues are left for future research.
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Appendices

3.A Second-best regulation with a perfect permit market

Consider the a�ne linear model. Suppose, for simplicity, that the abatement costs and the

pollution damage are not correlated, i.e. σγθ = 0. Hence the regulator and all �rms have the

same information about the expected marginal damage function:

y (Q; s) = y (Q) = γ̄ + δQ.

Then, given that the permit market is perfect, the solution to the regulator's problem (3.17) is

to i) o�er a non-constant aggregate permit supply that equals the expected marginal damage

function, T (Q) = y (Q), and ii) let �rms trade permits freely with each other in the regulation

period (e.g. Roberts and Spence 1976, Yates 2012). When the permit market is perfect, it is

irrelevant in terms of e�ciency how the regulator distributes permits initially between �rms.

The permit market allocates permits cost-e�ciently among polluting �rms. For instance,

if the �rms are identical ex-ante, the regulator may implement an equal individual permit

supply function for each �rm such that

Ti (qi) = y (nqi) .

Firms may thus purchase permits from the regulator according to this schedule. Let hi denote

�rm i's permit purchases. In the equilibrium, each �rm buys an equal amount of permits from

the regulator, i.e. hi = hm = 1
n
Q??, where Q?? denotes the second-best aggregate pollution.

The equilibrium is thus de�ned by

Ti (hm) = ui (qi; θi) = p??

where p?? is equilibrium (second-best) price in the permit market. Hence �rms that have

low abatement costs and thus uj (hm; θj) < Tj (hm) sell ∆qj = hm − qj permits in the

secondary market. Respectively, high-cost �rms, i.e. �rms with uk (hm; θk) > Tk (hm), buy

∆qk = qk − hm from the permit market. The average �rm (indexed with m and receiving

signal θm) does not buy or sell any permits in the permit market and it thus has Tm (hm) =

um (hm; θm). In equilibrium, buying one more permit from the regulator or abating one more

unit of emissions is more costly than the bene�t of selling the permit in the market. The

solution is second-best, while the marginal abatement costs are equal across �rms and the

aggregate abatement cost is equal to the expected marginal damage. Most importantly, the
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regulator does not need the private information of �rms in order to implement the second-

best regulation. This feature remains true even if the aggregate abatement costs and the

pollution damage are correlated. However, the regulator needs to be able to derive the

expected marginal damage function conditional on the average abatement costs (θm).

3.B Derivation of the expected deadweight loss

In order to derive the expected deadweight loss and the optimal slope τ , it is easy to see

using q?i = 1
β

(θi − p?), and from (3.3), (3.31) and (3.33) that

q?i − qi,τ =
1

β
(pτ − p?) +Oi,τ ,

where Oi,τ = 1
β

(
ωτ

βτ+ωβ+ωτ

) ((
θi − θ̄i (I)

)
−
(
θm − θ̄m (I)

))
. Furthermore,

q?2i − q2
i,τ =

1

β
(pτ − p?)

(
2q?i −

1

β
(pτ − p?)

)
+ 2Oi,τ

1

β
(θi − pτ )−O2

i,τ .

For the market as a whole we get

Q? −Qτ =
n

β
(pτ − p?) ,

Q?2 −Q2
τ =

n

β
(pτ − p?)

(
2Q? − n

β
(pτ − p?)

)
.

Plugging these into the deadweight loss equation (3.17) results in

DWLτ (I, ω) =
1

2

(
1 +

nδ

β

)
n

β
(pτ − p?)2︸ ︷︷ ︸

DWL0
τ

+
β

2

n∑
i

O2
i,τ . (3.61)

We may �rst examine the term DWL0
τ . From (3.15) and (3.30), the price di�erence is written

as

pτ − p? = − β

(β + nδ)

((
nδ − τ
β + τ

)(
θm − θ̄m (I)

)
+ (γ − γ̄ (I))

)
,
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and we hence get

DWL0
τ =

1

2

(
1

β
n

+ δ

){(
nδ − τ
β + τ

)2 (
θm − θ̄m (I)

)2
+ (γ − γ̄ (I))2

}
(3.62)

+

(
1

β
n

+ δ

)(
nδ − τ
β + τ

)(
θm − θ̄m (I)

)
(γ − γ̄ (I)) .

Taking the expectation from (3.62) yields

E
[
DWL0

τ

]
=

{(
nδ − τ
β + τ

)2

var [θm| I] + var [γ| I]

}
(3.63)

+

(
1

β
n

+ δ

)(
nδ − τ
β + τ

)
cov [γ, θm| I] .

However, the expected value of the second term in (3.61) is not zero if ω > 0. It may write

as

β

2
E

[
n∑
i

O2
i,τ

]
=

n

2β

(
τ

βτ
ω

+ β + τ

)2

{var [θm| I]− 2cov [θm, θi| I] + var [θi| I]}

=
n

2β

(
τ

βτ
ω

+ β + τ

)2

{var [θi| I]− var [θm| I]} . (3.64)

Thus taking the expected value of (3.61) and plugging in (3.63) and (3.64) results in the

following expected deadweight loss formula:

E [DWLτ (I, ω)] =

{(
nδ − τ
β + τ

)2

var [θm| I] + var [γ| I]

}
(3.65)

+

(
1

β
n

+ δ

)(
nδ − τ
β + τ

)
cov [γ, θm| I]

+
n

2β

(
τ

βτ
ω

+ β + τ

)2

{var [θi| I]− var [θm| I]} .

3.C Proof of Proposition 3.1

Suppose that other �rms bid sincerely in the information stage and �rm i bids according to

signal s′i when its true signal is si. Suppose also that s′i < si. Before the actual proof, I derive

the expected permit market price and the expected equilibrium outcomes of �rm i when it
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uses a deviation strategy Di (p; s
′
i, si) in the information stage. Note that

θ̄i (s)− θ̄i (s′) = (B + C) (si − s′i) ,

and

θ̄m (s)− θ̄m (s′) =

(
B

n
+ C

)
(si − s′i) .

Thus from (3.30):

pτ (s′) = pv (s)−
(
nδ (1− A) + βnZ

β + nδ

)
1

n
(si − s′i)︸ ︷︷ ︸

pv(s′)

(3.66)

+

(
τ

β + τ

)
(1− A)

1

n
(si − s′i)

= pv (s)−


(
nδ−τ
β+τ

)
(1− A) + nZ(
1 + nδ

β

)
 1

n
(si − s′i) .

The expected equilibrium price is lower than the expected �rst-best price pτ (s′) ≤ pv (s)

whenever s′i ≤ si and τ > 0. This follows from equation (3.36), which yields

(
nδ − τ
β + τ

)
(1− A) + nZ =

(
τ (β + τ)2(
βτ
ω

+ β + τ
)3

)
(n− 1)B ≥ 0.
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The expected equilibrium pollution qi,τ (s′) may derive from (3.31) and (3.57):

qi,τ (s′) = q̄i (s
′) (3.67)

+

{(
τ + ω

βτ + ωβ + ωτ

)(
n− 1

n

)
B +

(
1

β + τ

)(
B

n
+ C

)}
(si − s′i)

= qei (s)−
{

1

β
(n− 1)B +

(
1

β + nδ

)
[1− A− nZ]

}
1

n
(si − s′i)

+

(
τ + ω

βτ + ωβ + ωτ

)
(n− 1)B

1

n
(si − s′i)

+

(
τ + ω

βτ + ωβ + ωτ

)
(1− A)

1

n
(si − s′i)

−
(

1

βτ + ωβ + ωτ

)(
τ 2

β + τ

)
(1− A)

1

n
(si − s′i)

= qei (s)−

1 +
nδ

β
−

(
β + τ

βτ
ω

+ β + τ

)2


×
(

1

β + nδ

)(
1

1 + β
τ

+ β
ω

)(
n− 1

n

)
B (si − s′i) .

Respectively, the expected equilibrium purchases from the regulator may derive from (3.32):

hi,τ (s′) = q̄i (s
′) (3.68)

+

{(
ω

βτ + ωβ + ωτ

)(
n− 1

n

)
B +

(
1

β + τ

)(
B

n
+ C

)}
(si − s′i) .

Hence, a deviating �rm is expected to be on the demand side of the permit market and thus

q̄i (s
′) ≤ hi,τ (s′) ≤ qi,τ (s′) ≤ qei (s), if

(
1 + β

τ
+ β

ω

)
≥ 0 and

(
1 + nδ

β

)
≥
(

1

1+ βτ
ω(β+τ)

)2

. These

hold for all τ ≥ 0.

According to (3.60), we may decompose the incentive condition into three parts, ∆IC = ∆I
IC+

∆II
IC + ∆III

IC . First, ∆I
IC is non-negative if the permit schedule Ti (qi; s′) is above the inverse

residual supply function RS−1
i (qi; s−i) for qi ≥ q̄i (s

′). Note that these are equal at q̄i (s′),

when the bid functions are based on s′ = (s′i, s−i). Then, in order for Ti (qi; s′) ≥ RSi (qi; s−i)

for qi ≥ q̄i (s
′), it is enough to show that τ ≥ τv. Moreover, when I = s and τ ≥ 0, the

slope τ is bounded by the optimal slopes of the Roberts and Spence (1976) and Weitzman

(1978) models from (3.37) and (3.39). Then ∞ ≥ τRS ≥ τ ≥ τW (s) ≥ τv ≥ 0 whenever
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−nδ
β
≤ σγθ

var[θm]
≤ 1. The �rst part of the IC condition is then non-negative:

∆I
IC =

ˆ hi,τ (s′)

q̄i(s′)

{
Ti (x; s′)−RS−1

i (x; s−i)
}
dx

=
1

2
(τ − τv) (hi,τ (s′)− q̄i (s′))2

≥ 0.

Second, ∆III
IC is always non-negative if vi (qi; s) ≥ RS−1

i (qi; s−i) for all qi ≤ qei (s) and

vi (qi; s) ≤ RS−1
i (qi; s−i) for all qi ≥ qei (s). This holds if τv ≥ −β. This, on the other

hand, is satis�ed whenever σγθ
var[θm]

≤ 1, which also guarantees that the aggregate quantity

rule is weakly increasing in each bidder's signal. Hence if σγθ
var[θm]

≤ 1,

∆III
IC =

ˆ qei (s)

qi,τ (s′)

{
vi (x; s)−RS−1

i (x; s−i)
}
dx

=
1

2
(β + τv) (qei (s)− qi,τ (s′))

2

≥ 0.

Third, the second part of the IC condition writes as

∆II
IC =

ˆ qi,τ (s′)

hi,τ (s′)

{
pτ (s′) + ω (x− hi,τ (s′))−RS−1

i (x; s−i)
}
dx

= (β + τv) (qei (s)− qi,τ (s′)) (qi,τ (s′)− hi,τ (s′))− 1

2
(ω − τv) (qi,τ (s′)− hi,τ (s′))

2
.

The sign of ∆II
IC is not clear. However, I show next that when (3.18) holds, the incentive

constraint ∆IC is non-negative for all ω.

Firstly, ∆IC is clearly positive when ω = 0, because then qi,τ (s′) = qei (s) which implies

pτ (s′) = pv (s) ≥ RS−1
i (qi; s−i) for all qi ≤ qi,τ (s′). Thus,

∆II
IC

∣∣
ω=0

=

ˆ qi,τ (s′)

hi,τ (s′)

{
pv (s)−RS−1

i (x; s−i)
}
dx ≥ 0,

and

∆IC |ω=0 = ∆I
IC + ∆II

IC ≥ 0.

Respectively, when ω →∞ the limit value of the incentive constraint is positive, while then

lim
ω→∞

{qi,τ (s′)− hi,τ (s′)} = 0. This gives lim
ω→∞

∆IC = ∆I
IC + ∆III

IC ≥ 0.
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Further, when τ > 0, the slope τ is decreasing in ω. From (3.36) we get

dτ

dω
= −∂fτ,s

∂ω
/
∂fτ,s
∂τ

= −

 3β
(
τ
ω

)2
(n− 1)B( βτ

ω
+β+τ

β+τ

)4

(β + nδ) (1− A) + β
{

1− 2β
ω

(
τ

β+τ

)}
(n− 1)B

 .

It is easy to show that dτ
dω

∣∣
ω=0

= 0 and lim
ω→∞

dτ
dω

= 0. According to the numerical simulations

(see Appendix 3.D) and also by τ (s, ω)|ω=0 = τRS ≥ τ ≥ τW (s) = lim
ω→∞

τ (s, ω) we get dτ
dω
≤ 0

when τ ≥ 0. This furthermore gives

dpτ (s′)

dω

∣∣∣∣
ω=0

=

(
β

(β + τRS)2

)(
B

n
+ C

)
(si − s′i)

dτ

dω

∣∣∣∣
ω=0

= 0.

Hence taking a derivative of the incentive constraint with respect to ω yields

d∆IC

dω
= −dπi,τ (s′i; si, s−i)

dω

= {pτ (s′) + ω (qi,τ (s′)− hi,τ (s′))− vi (qi,τ (s′) ; s)}︸ ︷︷ ︸
=0

dqi,τ (s′)

dω

+{Ti (hi,τ (s′) ; s′)− pτ (s′)− ω (qi,τ (s′)− hi,τ (s′))}︸ ︷︷ ︸
=0

dhi,τ (s′)

dω

+

ˆ hi,τ (s′)

q̄i(s′)

dTi (x; s′)

dω
dx+

ˆ ∆qi(s
′)

0

{
dpτ (s′)

dω
+ x

}
dx

=
1

2
(hi,τ (s′)− q̄i (s′))2 dτ

dω
+ (qi,τ (s′)− hi,τ (s′))

dpτ (s′)

dω
+

1

2
(qi,τ (s′)− hi,τ (s′))

2
.

Thus ∆IC is positive and increasing in ω when evaluated at ω = 0, while

d∆IC

dω

∣∣∣∣
ω=0

=
1

2

((
n− 1

n

)
B

β
(si − s′i)

)2

≥ 0.

Note also that lim
ω→∞

d∆IC

dω
= 0. Moreover, according to the numerical simulations there is only

one point where d∆IC

dω
= 0 when ω ≥ 0. Thus ∆IC �rst increases and then decreases when ω

increases from zero. This implies that ∆IC ≥ 0 for all ω ≥ 0 when the regulator uses permit

schedules Ti (qi; s) = p̄ (s) + τ (qi − q̄i(s)) and when (3.18) holds.

Suppose, on the contrary, that the permit supply schedules and inverse residual supply func-

tions are decreasing and −β < τ < τv < 0. I thus relax the assumption −nδ
β
≤ σγθ

var[θm]
. With

decreasing inverse residual supply functions and permit schedules, Ti (qi; s′) ≤ RS−1
i (qi; s−i)
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for all qi ≥ q̄i (s
′) and pv (s) ≤ RS−1

i (qi; s−i) for all qi ≤ qei (s). I next show that ∆IC ≤ 0 when

the permit market is perfect (ω = 0) and also when it is collapsed (ω →∞) if σγθ
var[θm]

< −nδ
β
.

Consider �rst that ω = 0. This case is presented in Figure 3.3a. From (3.66) and (3.67) we

get pτ (s′) = pv (s) and qi,τ (s′) = qei (s). Furthermore,

hi,τ (s′) = qei (s)− 1

β

(
n− 1

n

)
B (si − s′i)

≤ qei (s).

Hence the IC condition is non-positive:

∆IC |ω=0 =

ˆ hi,τ (s′)

q̄i(s′)

{
Ti (x; s′)−RS−1

i (x; s−i)
}
dx+

ˆ qei (s)

hi,τ (s′)

{
pv (s)−RS−1

i (x; s−i)
}
dx ≤ 0.

Moreover, if s′i < si and
σγθ

var[θm]
< −nδ

β
the IC condition is strictly negative and sincere bidding

is not incentive compatible.

Suppose next that ω →∞ (see Figure 3.3b). This gives

qi,τ (s′) = hi,τ (s′) = qei (s) +

 nδ
β

(β + nδ)
(
β
|τ | − 1

)
(n− 1

n

)
B (si − s′i)

≥ qei (s).

The limit value of the IC condition is then non-positive:

lim
ω→∞

∆IC =

ˆ qei (s)

q̄i(s′)

{
Ti (x; s′)−RS−1

i (x; s−i)
}
dx+

ˆ qi,τ (s′)

qei (s)

{Ti (x; s′)− vi (x; s)} dx ≤ 0.

With s′i < si and
σγθ

var[θm]
< −nδ

β
we get lim

ω→∞
∆IC < 0. Thus the regulator cannot guarantee

that the Vickrey auction in the information stage is incentive compatible if σγθ
var[θm]

< −nδ
β
.

Similar arguments hold when s′i > si.�

3.D Simulations

In order to give some intuition of the results I have run some numerical simulations. I have

used nine di�erent information structures, where I have varied the standard deviation of

the signal noise (σε ) and the correlation coe�cient of the aggregate abatement costs and

pollution damage (ργθ). The other parameters of the a�ne linear model are kept �xed.
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Figure 3.3: Incentive compatibility of the Vickrey auction when σγθ
var[θm]

< −nδ
β
and when the

permit market is (a) perfect (ω = 0) or (b) collapsed (ω →∞).
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The �xed parameter values are presented in Table 3.1 and the values of the two variating

variables in Table 3.2. For example in Simulation 5, I have used σε = 10 and ργθ = 0. For each

information structure (simulations 1-9) I have let the coe�cient of the market performance ω

to rise from 0 to 30. The simulation results are presented in Figures 3.4, 3.5 and 3.6. Figures

3.4 and 3.5 present the results from Section 3.3 and thus the expected deadweight losses and

slopes of the permit supply schedules of the second-best regulation, Weitzman's (1978) non-

constant tax regulation and Roberts and Spence's (1976) non-constant quantity regulation.

The results are calculated given that the regulator knows only the prior information (I = 0)

and when the regulator is aware of the private information of �rms (I = s). Figure 3.6

presents the IC conditions of the Vickrey auction followed by the second-best regulation.

Table 3.1: Simulations - �xed parameter values

Variable Value
n Number of �rms 10
σθ Standard deviation of the abatement cost parameter 10
ρ Correlation coe�cient of the abatement costs 0.5
β/n Slope of the aggregate abatement costs 1
σγ Standard deviation of the damage parameter 10
δ Slope of the pollution damage 1

Table 3.2: Simulations - values of variating variables

Variable σε Standard deviation of the signal noise
Value 5 10 20

ργθ Correlation coe�cient -0.2 Simulation 1 Simulation 2 Simulation 3
of abatement costs 0 Simulation 4 Simulation 5 Simulation 6
and pollution damage 0.2 Simulation 7 Simulation 8 Simulation 9

In Figure 3.4 the bold curves describe the deadweight losses of the second-best regulation

when the regulator knows only the prior information (red curve) and when the regulator

knows the private information of �rms (blue curves). The solid thin curves are the results of

the Roberts and Spence non-constant quantity regulation and the dashed curves the Weitz-

man non-constant tax regulation. When moving from the left panels to the right panels, and

thus when the signals become more noisy, less is gained from the information mechanism

and the closer the red and blue curves come to each other when the permit market is not

perfect. Also, the more noisy the signals are and the better the permit market performs the

greater the di�erence is between the Weitzman non-constant tax regulation and the second-

best regulation. On the other hand, when the correlation between emission abatement costs
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and pollution damage increases from negative to positive (from the top panels to the bottom

panels) the wider the gap between results with and without private information becomes

outside the case of a perfect permit market.

Figure 3.5 presents the slopes of the permit supply schedules. According to the numerical

simulations, the slope of the second-best regulation (τ > 0) is decreasing in ω and increasing

in ργθ and σε (when I = s and ω > 0). Moreover, the di�erence between the slopes of the

Weitzman, and Roberts and Spence regulations increases in ργθ but decreases in σε (if I = s).

Figure 3.6 presents the IC condition from equation (3.59) in the form of ∆IC

(si−s′i)
2 . Hence it

is independent whether s′i is greater or smaller than the true signal si. According to the

simulations, ∆IC

(si−s′i)
2 �rst increases and then decreases when ω increases if −nδ

β
≤ σγθ

var[θm]
≤ 1

is satis�ed. Thus in all simulations ∆IC

(si−s′i)
2 ≥ 0.
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Figure 3.4: Expected deadweight losses of the second-best regulation (SB), the Weitzman
(1978) non-constant tax regulation (W ), and the Roberts and Spence (1976) non-constant
quantity regulation (RS) when the coe�cient of market performance ω increases. The red
curves describe the cases when the regulator knows only the prior information (I = 0) and
the blue curves the cases when the regulator knows the private information of �rms (I = s).
The parameter values of the various simulations are presented in Tables 3.1 and 3.2. In the
simulations the signal noise increases from left to right and the correlation between emission
reduction costs and bene�ts from top to bottom.
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Figure 3.5: Slopes of the permit supply schedules when the coe�cient of market performance
ω increases. The second-best regulation (τ), the Weitzman (1978) non-constant tax regula-
tion (τW ), the Roberts and Spence (1976) non-constant quantity regulation (τRS) and the
inverse residual supply of the Vickrey auction (τv). The red curves describe the cases when
the regulator knows only the prior information (I = 0) and the blue curves the cases when
the regulator knows the private information of �rms (I = s). The parameter values of the
various simulations are presented in Tables 3.1 and 3.2. In the simulations the signal noise
increases from left to right and the correlation between emission reduction costs and bene�ts
from top to bottom.
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Figure 3.6: Incentive compatibility condition of the Vickrey auction followed by the second-
best regulation, ∆IC/ (si − s′i)

2. The parameter values of the various simulations are pre-
sented in Tables 3.1 and 3.2. In the simulations the signal noise increases from left to right
and the correlation between emission reduction costs and bene�ts from top to bottom.
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Chapter 4

Collusion in emission allowance auctions

Abstract

I examine the Vickrey auction and the uniform price auction in allocations of emission allowances

without an allowance resale market. I study oligopolistic competition in an allowance auction and

build a demand function equilibrium model with linear strategies and private values. In the model,

the market consists of two parts, a competitive fringe and a number of strategic �rms. The fringe

balances the market and hence I do not have to consider Wilson's (1979) low price equilibria. I link

the auction model with a coalition formation game, where any subgroup of �rms may coordinate

their bids in the auction. I calculate the impact of collusion on the e�ciency of the allowance

allocation and auction revenues. Montero (2008) shows, with a similar kind of private values model,

that the Vickrey auction provides e�cient allocation of allowances even if �rms collude. However, all

strategic �rms have strong incentives to form one big coalition in a Vickrey auction, which reduces

revenues. The uniform price auction creates a coalition game with positive externalities. The

more concentrated the coalition structure is, the better o� coalition outsiders are. I examine three

examples of coalition formation game in a uniform price auction: a cartel game with either myopic

or farsighted �rms and an open membership game with multiple coalitions. The stable coalition

structure and hence the e�ciency and revenues of the uniform price auction depend heavily on the

coalition game and the structure of the market.
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4.1 Introduction

In many emissions trading programs, auction mechanisms are used to allocate emission

allowances to �rms. For instance, the European Union Emissions Trading System (EU

ETS), California's Cap-and-Trade Program and the U.S.'s Regional Greenhouse Gas Ini-

tiative (RGGI) use a uniform price format to auction emission allowances. The primary

objective of pollution regulation is the e�cient allocation of pollution rights. The total costs

of emission reductions will be minimized if the marginal abatement costs, or the marginal

values of the right to pollute, are equal across �rms. Also, an e�cient allocation creates the

right price signal for emissions reductions in other sectors of the economy. Contrary to many

other auctions, maximizing auction revenues is not the main objective of pollution regula-

tion. However, revenues may be important if revenues can be recycled into the economy in a

pro�table way. For instance, the revenues from auctions can be used to reduce distortionary

taxes such as labour taxes or increase �rms' incentives for research and development activities

of cleaner and more e�cient technologies.

Collusion is one of the concerns of e�cient markets and auctions. In this paper, collusion

means that �rms can communicate prior to an auction, but cannot make binding agreements,

because such agreements are illegal. By communicating, strategic �rms or subgroups of �rms,

i.e. coalitions, may coordinate their bidding behavior in the auction. This, on the other hand,

has consequences for the e�ciency and revenues of the auction. However, while agreements

are not binding, it is easy for an individual �rm to deviate from the agreement. Thus a

stable coalition structure must be self-enforcing and it must bene�t all coalition members.

The objective of this paper is to examine two di�erent auction designs for allocating pollution

rights to �rms where �rms may collude. I make comparisons between the commonly used

design of the uniform price auction and the Vickrey auction, in terms of e�ciency and

revenues. In addition, I study three examples of coalition formation games: a cartel game

with myopic �rms, a cartel game with farsighted �rms and an open membership game with

multiple coalitions.

The contribution of this paper is to link multi-unit auction mechanisms to non-cooperative

coalition games. Papers studying collusion in multi-unit auctions are surprisingly scarce.

However, Wilson (1979) and Back and Zender (1993), and subsequent papers, have shown

that demand reduction or collusive-seeming bidding may result in very low equilibrium prices

in uniform price auctions. Furthermore, Fabra (2003) and Dechenaux and Kovenock (2007),

for instance, examine tacit collusion in in�nitely repeated uniform price auctions1. They

study how perfect collusion can be sustained among the capacity-constrained �rms. However,

1Fabra (2003) also studies discriminatory price auctions.
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these are equilibria in non-cooperative games between individual �rms. On the other hand,

Montero (2008) shows that collusion does not distort the e�cient solution of the Vickrey

auction.

The model of this paper is a static one. I examine the non-cooperative auction game of

coalitions, and how this game a�ects the formation of coalitions by �rms. I apply the partition

function approach (e.g. Yi 2003). Thus the coalition formation is a two-stage game. In the

�rst stage, strategic �rms decide on their participation in coalitions. In the second stage,

coalitions play a non-cooperative auction game, which is assumed to have a unique Nash

equilibrium outcome for any coalition structure. Hence the whole game can be interpreted

as a one-stage game, where �rms need to choose their membership strategies, because the

payo�s of the second-stage auction can be calculated given the information about the auction

design and the coalition structure. Moreover, to simplify the model, I assume that coalition

members may transfer emission allowances between themselves inside each coalition, but

there is no other resale market after the auction. To my knowledge, coalition formation has

not been studied in the context of multi-unit auction models in a similar set-up before.

In uniform price auctions, bidders pay the uniform clearing price for all the units they win.

In general, this makes uniform price auctions rather complex to model. Bidders will not bid

with their true valuations if they can in�uence the clearing price and, consequently, their

payo�s by their bidding. The uniform pricing creates strong incentives for bid-shading and

demand reduction, which may cause ine�cient allocation of allowances and decrease the

revenues. Bidders shade their bids more, the relatively larger they are. Due to bid-shading,

the clearing price is lower than the competitive price and large bidders receive less units than

in the e�cient outcome. (E.g. Ausubel et al. 2013.)

Under-pricing can be eliminated or reduced e.g. 1) if inelastic supply can be adjusted after

the submission of bids (Back and Zender 2001, McAdams 2007); 2) by making the supply

elastic (LiCalzi and Pavan 2005); or 3) by forcing the bid functions to be discrete (Kremer and

Nyborg 2004). Moreover, strategic bidding models with a uniform price format have often

applied the supply function equlibrium (SFE) models developed originally by Klemperer and

Meyer (1989). If there are n strategic agents, the solution of SFE is a system of n di�erential

equations. Usually, these models have a continuum of equilibria bounded by the Bertrand

and Cournot equilibria. However, the number of equilibria can be reduced by assumptions

about the initial conditions or end-conditions of the supply functions. For instance, in models

of electric power markets, capacity and price constraints reduce the range of equilibria (e.g.

Green and Newbery 1992, Holmberg 2008, 2009). Also, assuming linear model and linear

bid schedules simpli�es the model and o�ers tractable solutions (e.g. Green 1996, Baldick
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et al. 2004, Ausubel et al. 2013). Another important feature of the uniform price auction

is that coalitions are bene�cial for members of coalitions, but they are even more bene�cial

for those �rms that stay outside. Hence, under uniform pricing coalition formation is a game

with positive externalities. In these games, large coalitions are hard to sustain, because �rms

have strong incentives to deviate.

In addition to the uniform price auction, I study the Vickrey auction, or its multi-unit

extension the Vickrey-Clarke-Groves (VCG) mechanism (Vickrey 1961, Clarke 1971, Groves

1973). In particular, I apply the indirect interpretation of the VCG mechanism introduced by

Montero (2008). When bidders' values are private, i.e. each bidder knows its valuations2 and

these valuations do not depend on other bidders' valuations, the VCG mechanism implements

e�cient allocation in dominant strategies. Hence it is the best response for each �rm to bid

sincerely in a Vickrey auction whatever other bidders do. This is induced by the Vickrey

pricing rule. The marginal price bidders pay for each unit they win is the externality the

bidder causes to other bidders by participating in the auction and winning the unit. Montero

(2008) derives Vickrey prices by a particular payback rule, which determines the share of

paybacks to each bidder after the auction. The marginal payment schedule and thus the share

of the paybacks is determined by the total supply of allowances and the bid schedules of other

bidders, and is thus independent of the bidder's own bidding in the auction. The greater the

bidder's e�ect on the auction equilibrium, the greater the share of the paybacks. Furthermore,

Montero shows that collusion does not distort the e�ciency of the outcome. However, if

colluding �rms are able to agree on the distribution of extra pro�ts due to collusion, the

Vickrey pricing rule creates incentives for stratgic �rms to form as large coalitions as possible,

because coalitions do not bene�t outsiders but only insiders. Coalition pro�ts are greatest

with grand coalition where all strategic �rms are members of a single coalition. With an

e�cient cartel agreement, each strategic �rm is better o� than if it participated in the auction

individually.

To analyze these two auction designs, I derive a linear-quadratic demand function equilibrium

with a �xed supply of emission allowances. I assume that the market consists of two parts.

In addition to ex-ante symmetric strategic �rms, there is a fringe of competitive �rms. The

fringe �rms act as price-takers in the market and thus the residual supply of allowances for

strategic �rms is an increasing function of price. This reduces the possibilities for underpricing

in a uniform price auction. Furthermore, under a uniform price auction, I consider three

endogenous coalition formation games. The �rst two games are cartel games, where only one

coalition, i.e. a cartel, is formed. However, the stable structures are di�erent depending on

2In the case of emission allowance auctions, the marginal valuations are determined by the marginal
abatement costs.
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whether the �rms are myopic or farsighted. If a �rm is myopic, it does not take into account

the �nal result of its decisions but only the immediate reaction of the other players. A

farsighted �rm, on the other hand, understands that after its actions other �rms or coalitions

may react and these reactions might result in further reactions and thus a�ect the �nal

outcome of the game. In addition to these two cartel games, I consider one game with

multiple coalitions. Multiple coalition games become relatively complicated when the number

of strategic agents increases. The number of possible coalition structures increases rapidly

in the number of strategic �rms (e.g. Sáiz et al. 2006). Fortunately, the analysis becomes

simpler when the strategic �rms are symmetric. Another distinction in coalition formation

games is whether the coalition formation is a sequential process (e.g. Bloch 1995, 1996)

or is it a simultaneous coalition formation game (e.g. Yi 1997). Moreover, what happens

to the coalition if one of the �rms or any subgroup of �rms leaves the coalition? Do the

remaining members of the coalition continue as a new coalition or does the coalition break

down into singletons? For simplicity, I consider only simultaneous coalition formation games,

where deviation strategies do not break down the remaining coalition. Moreover, due to the

assumptions of ex-ante symmetric �rms and a simultaneous coalition formation game, I do

not have to consider transfers among coalition members. Each member of the same coalition

gets the same payo�.

Applying a numerical example, I show the existence of stable structures in all three coalition

formation games with a linear-quadratic model. Due to e�cient allocation, there is no welfare

loss in the Vickrey auction. However, the revenue loss increases in the market share of the

strategic �rms. In a uniform price auction, on the other hand, the stable coalition structure

and hence the e�ciency and revenues depend heavily on the coalition game as well as the

structure of the market. If �rms are not able to make binding agreements (a cartel game

with myopic �rms and an open membership game), the allocation of allowances is almost

e�cient and the auction revenues are almost as great as in a competitive market, at least

for a large enough number of strategic �rms and a large enough market share of fringe �rms.

If �rms are farsighted and can agree on the least competitive cartel agreement, the uniform

price auction will not o�er an e�cient allocation and the auction revenues will be relatively

low, at least if strategic �rms have a large market share.

This chapter is organized as follows. In Section 4.2, I introduce the linear-quadratic model.

Section 4.3 explains the payment schedules of the two auction designs and Section 4.4 the

three coalition formation games. In Section 4.5, I run a numerical simulation and derive the

results of the paper. Section 4.6 concludes.

145



4.2 Model

I consider an auction model with a large number of �rms, which are divided into two types,

namely �rms in a competitive fringe acting as one market participant indexed with f and a

number of n ≥ 3 identical strategic �rms indexed with i ∈ N = {1, . . . , n}. Allowances will
be allocated to �rms by two alternative auction designs: the Vickrey auction (VA) and the

uniform price auction (UPA). The auction and payment rules are described later.

Pollution in the industry is denoted by a vector qI = (qf ,q), where q = (q1, . . . , qn) is a

vector of strategic �rms' pollution and the total pollution of the fringe is denoted by qf .

The aggregate pollution is thus Q = qf +
∑n

i=1 qi. At the outset, the �rms' (business-as-

usual) pollution is denoted by Q0 = q0
f +
∑n

i=1 q
0
i , where q

0
i denotes the pollution of strategic

�rm i and q0
f is the business-as-usual pollution of the competitive fringe. Hence, I denote

the market share of strategic �rms by λ ≡
∑n
i=1 q

0
i

Q0 and the market share of the fringe is

respectively 1− λ =
q0f
Q0 .

Reducing emissions is costly to �rms. The total costs of reducing pollution below the business-

as-usual levels, for �rm i, are given by the abatement cost function ACi (qi) =
´ q0i
qi
ui (x) dx,

where ui (qi) is the marginal abatement cost function in terms of emissions, i.e. the marginal

value of the avoided abatement costs.3 Thus the gross value of the avoided abatement costs

of �rm i, i.e. the gross value of pollution, writes Ui (qi) = ACi (0)− ACi (qi) =
´ qi

0
ui (x) dx.

4.2.1 Linear-quadratic model and auction rules

For simplicity, I use a linear-quadratic model. I thus assume that Ui (qi) is given by the

equation:

Ui (qi) = θiqi −
1

2
βiq

2
i , (4.1)

where the intercept of the marginal value function is assumed, for simplicity, to be constant for

every �rm in the economy and thus θi = θ for all i and for all fringe �rms. This speci�cation

de�nes the linear-quadratic auction model.

De�nition 4.1. The model described in equations (4.1) - (4.7) is called the linear-quadratic

model.

The marginal abatement cost function of the entire industry, or the aggregate inverse demand

3Let zi denote emission reductions and ACzi (zi) is the abatement cost function in emission reductions, i.e.
ACi (qi) ≡ ACzi (zi (qi)), where zi (qi) = q0i − qi ≥ 0. The marginal abatement cost function is MACzi (zi) =
dACzi (zi)

dzi
≡ dACi(qi)

dqi

dqi
dzi

= −ui (qi). Thus,
dACzi (zi)

dqi
=

dACzi (zi)
dzi

dzi
dqi

= ui (qi).
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function for emission allowances, is written as

u (Q) = θ − βQ. (4.2)

Hence, the true demand function of the industry is u−1 (p) = θ
β
− 1

β
p.

Pollution causes damage. The pollution reduction target is determined by the regulator's

expectations about marginal abatement costs and the marginal damage of pollution. I assume

that the regulator observes Q0 but has no exact information about θ or β. Hence the regulator

allocates a �xed supply of allowances L = δQ0, such that:

E [u (L)] = E [MDF (L)] , (4.3)

where MDF (Q) is the marginal damage function and 0 < (1− δ) < 1 is the reduction

target as a share of business-as-usual emissions. Note that while MDF is uncertain in the

model, we live in a second-best world. Hence L = Q? = q?f +
∑n

i=1 q
?
i , where the second-best

solution, i.e. the cost-minimizing solution given the �xed supply of allowances L, is denoted

by a vector q?I =
(
q?f ,q

?
)
. Business-as-usual emissions are found at the point where the

marginal value of pollution falls to zero. Hence Q0 = θ
β
, which further gives

L =
δθ

β
. (4.4)

Given the market share of the fringe 1− λ, the aggregate marginal value of pollution of the

fringe is written as

uf (qf ) = θ − βfqf , (4.5)

where βf = 1
1−λβ. All the strategic �rms are symmetric and each of them thus has a true

inverse demand for allowances as follows:

ui (qi) = θ − βiqi. (4.6)

Furthermore, while the strategic �rms are identical, the slope of an individual strategic �rm

is βi = n
λ
β.

In the auction, either in VA or UPA, each bidder x reports its demand schedule Dx (p) to

the regulator. The inverse demand schedule is written Px (qx) ≡ D−1
x (qx). The schedules

are limited to be linear and strictly decreasing in p. Furthermore, I assume that the bid

functions have an equal constant term θ, which is common knowledge among bidders. Thus
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the reported demand schedules are written as

Px (qx) = θ − bxqx, (4.7)

where the strategy of bidder x is determined solely by the slope of the inverse bid function

bx. In the Vickrey auction it is a dominant strategy to bid sincerely, and thus bx = βx. In

the linear equilibrium of the uniform price auction, on the other hand, bidders do not shade

their bids at qx = 0 and bid-shading increases in quantity (Ausubel et al. 2013). Hence, the

bid function coincides with the marginal valuation at qx = 0 and is steeper than the marginal

valuation for qx > 0. Thus the linear bid function from (4.7) with bx ≥ βx is well justi�ed in

both auction designs.

Moreover, the relative size of a single fringe �rm is so small that I assume it to bid with

its marginal costs. Hence, Pf (qf ) = uf (qf ) from (4.5). Given the pollution target L, the

residual supply of emissions allowances for the oligopolistic market, i.e. for all the strategic

�rms, is thus

RSs (p) = L− u−1
f (p) (4.8)

= (δ + λ− 1)
θ

β
+

(
1− λ
β

)
p,

and the inverse residual supply for the oligopolistic market is RS−1
s (qs) =

(
1− δ

1−λ

)
θ +(

β
1−λ

)
qs, where qs =

∑n
i=1 qi.

4

Respectively, given the bid schedules of other bidders, the residual supply function for bidder

x is

RSx (p) = L−D−x (p) , (4.9)

where, D−x(p) is the aggregate demand reported by every other bidder but bidder x.

The regulator computes the total demand from the bid schedules and clears the auction. The

auction equilibrium is de�ned by the clearing rule:

p = RS−1
x (lx)


≥ Px (lx) , if lx = 0

= Px (lx) , if 0 < lx < L

≤ Px (lx) , if lx = L

, (4.10)

4A �xed supply of allowances is one special case in Montero (2008). He studies a more general model
where the supply of allowances is de�ned by the marginal damage function of pollution. Note that the model
of this paper also generalizes to the case of a non-constant supply of allowances. For example, in the absence
of the fringe, we could also write RS−1s (qs) ≡MDF (Q) where qs = Q.
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where lx is the number of emission allowances allocated to bidder x and RS−1
x (qx) is the

inverse residual supply. In a uniform price auction bidders pay the clearing price for all the

allowances they win. In a Vickrey auction, bidders receive paybacks after the auction and

the marginal price that bidders pay for units is called the Vickrey price. The total costs of

a �rm are the sum of its abatement costs ACx (lx) and its auction payments RA
x in auction

A = va, upa. In the Vickrey auction the costs are

TCva
x (b?x) =

q0xˆ

l?x

ux (z) dz

︸ ︷︷ ︸
ACx(l?x)

+ (1− αx) p?l?x︸ ︷︷ ︸
Rvax

, (4.11)

where p? is the clearing price of the Vickrey auction, l?x is the equilibrium allocation of

pollution permits and αx is the share of the paybacks to bidder x after the auction. Due to

e�cient allocation, the clearing price of the Vickrey auction is the second-best price. In the

uniform price auction total costs of bidder x are

TCupa
x

(
b̂x

)
=

q0xˆ

l̂x

ux (z) dz

︸ ︷︷ ︸
ACx(l̂x)

+ p̂l̂x︸︷︷︸
Rupax

, (4.12)

where, respectively, p̂ is the clearing price of the uniform price auction and l̂x is the equilibrium

allocation of pollution permits. I explain later how the payment schedules a�ect the �rms'

bidding behavior and, respectively, their strategies in coalition formation.

4.2.2 Coalition structure

Strategic �rms may co-operate when reporting their schedules to the regulator in the auction.

If this is the case, a coalition of co-operating �rms reports one joint demand schedule or one of

the collusive �rms reports the aggregate schedule while the others report null schedules. After

the auction, the coalition shares the costs and allowances between its members using some

internal mechanism which I assume to be e�cient and equal with respect to the member

�rms' cost functions. Other than transactions inside coalitions, I assume that there is no

other resale market. Due to the symmetry, each �rm inside a coalition earns equal pro�ts.

The joint true inverse demand of coalition ci, consisting of ni strategic �rms, can be written
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as

uci(qci) = θ − βciqci , (4.13)

where βci = n
niλ
β. The pollution of coalition ci is qci and the pollution of �rm j in coalition ci

is denoted by qci(j) =
qci
ni
. I assume that �rms may form multiple coalitions of di�erent sizes. I

assume that the intercept θ and the slopes βx are common knowledge among polluting �rms,

given the knowledge related to the coalition structure C.

De�nition 4.2. The coalition structure C ≡ {n1, n2, . . . , nm} is a partition of strategic

�rms, such that coalition ci includes ni strategic �rms; ci ∩ cj = Ø, ∀i 6= j;
∑m

i=1 ni = n; and

n ≥ n1 ≥ n2 ≥ · · · ≥ nm ≥ 1.

Hence I assume that each strategic �rm is a member of one and only one coalition. Also,

coalitions are ordered such that the largest coalition is c1 and the smallest is cm, where m is

the number of coalitions. If m = 1, then there is only one coalition and it is called a grand

coalition, i.e. c1 ≡ cgc and n1 ≡ ngc = n. On the other hand, if m = n, then all coalitions are

singletons, i.e. ni = 1 for all i. To simplify the notation, consider the following structure:

C =

n1, . . . , nm1︸ ︷︷ ︸
m1 coalitions

, nm1+1, . . . , nm1+m2︸ ︷︷ ︸
m2 coalitions

, . . . , n(m1+...+mh−1+1), . . . , nm︸ ︷︷ ︸
mh coalitions

 (4.14)

≡
{
η

(m1)
1 , η

(m2)
2 , . . . , η

(mh)
h

}
,

where η1 = n1 = · · · = nm1 and ηi = n(1+
∑i−1
j=1mj)

= · · · = n(
∑i
j=1mj)

with η1 > η2 > · · · > ηh

and m =
∑h

i=1mi. Hence each of the �rst m1 symmetric coalitions denoted by κ1 ≡ η
(m1)
1

has exactly η1 members, the next m2 coalitions denoted by κ2 ≡ η
(m2)
2 have η2 members each

and so forth.5

I assume that coalitions of equal size apply symmetric strategies in auctions, i.e. bcj = bκi
for all nj = ηi. Thus the inverse residual supply for coalition cj is

RS−1
cj

(
qcj
)

= max

0,

θ −
 1∑m

i 6=j

{
1
bci

}
+ 1

βf

L+

 1∑m
i 6=j

{
1
bci

}
+ 1

βf

 qcj

 , (4.15)

5Respectively, coalition cj can be denoted by cj ≡ n(1)j . Hence cj ≡ κi if nj = ηi.
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or respectively using notation with κi:

RS−1
κi

(qκi) = max

0,

θ −
 1

mi−1
bκi

+
∑h

j 6=i

{
mj
bκj

}
+ 1

βf

L (4.16)

+

 1

mi−1
bκi

+
∑h

j 6=i

{
mj
bκj

}
+ 1

βf

 qκi

 .
Suppose that the total costs TCA

κi
(bκi) of coalition κi, given the coalition structure C ={

η
(m1)
1 , . . . , η

(mh)
h

}
, are determined by the unique Nash equilibrium of the non-cooperative

auction game A and thus are derived from (4.11) or (4.12). Hence each coalition structure

maps the total costs for every coalition and, consequently, for every individual �rm, given the

equilibrium of auction A. The per-member costs of coalition κi, given the coalition structure

C and the auction design A = va, upa, are thus given by the following partition function:

TCA (ηi;C) ≡
TCA

κi
(bκi)

ηi
.

I omit the superscript A when it is not relevant. Due to the symmetry, each member of

a coalition is assumed to earn equal pro�ts. I consider three di�erent coalition formation

games. However, I �rst explain the payment rules of the second-stage auction game and

derive two metrics for comparing auction designs. These are the relative welfare loss and

the relative revenue loss. The aggregate abatement costs are compared to the abatement

costs by the e�cient allocation of allowances (i.e. the second-best allocation) denoted by

ACe. Auction revenues are compared to �competitive revenues�, which are the revenues if

the regulator received the second-best price p? from all the allowances it sells in the auction,

i.e. Re = p?L.

4.3 Auction

4.3.1 Vickrey auction

In the Vickrey auction (see Montero 2008), in addition to the auction procedure described in

the previous section, every bidder gets paybacks after the auction. The share of the paybacks
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to coalition ci is de�ned as

αci = 1−

lci´
0

RS−1
ci

(z)dz

RS−1
ci

(lci)lci
. (4.17)

In equilibrium RS−1
ci

(lci) = p. Hence the total costs of coalition ci in a Vickrey auction are

TCva
ci

(bci) =

q0ciˆ

lci

uci (z) dz + (1− αci) plci (4.18)

=

q0ciˆ

lci

{θ − βciz} dz +

lciˆ

0

RS−1
ci

(x)dx.

The �rst term is the abatement costs of reducing emissions from q0
ci
to lci and the second term

is the auction payment. By Proposition 3 in Montero (2008), it is optimal for each bidder to

report its true demand curve irrespective of the other bidders' reports due to the paybacks.

Thus the mechanism implements e�cient allocation in dominant strategies. In equilibrium,

all �rms face the same clearing price and receive the e�cient amount of allowances, but the

�nal (average) prices, i.e. (1− αj) p, di�ers between bidders, unless they all have identical bid
schedules. The marginal price, i.e. the Vickrey price, is determined by the inverse residual

supply function RS−1
ci

(qci). The �nal payment is equal to the externality the bidder causes

to other bidders. When the total supply of allowances is �xed, it is the external cost due to

the increase in allowance price.6 If the number of strategic �rms increases to the limit and if

�rms do not coordinate their bids, the share of paybacks closes to zero and the Vickrey price

for all units is equal to the uniform second-best price p?.

Due to truthful reporting, the Vickrey auction implements e�cient allocation of allowances

and thus a cost-minimizing solution for pollution control. The second-best allocation holds

even if �rms coordinate their bids in the auction. Still, the dominant strategy is to report

truthfully and the outcome will be the second-best. However, compared to a competitive

market, the paybacks to coalitions are greater due to their greater impacts on aggregate

demand and the larger residual supply at every price. Under collusion, the auction revenues

of the regulator will be lower than in a more competitive market structure.

The paybacks to an individual fringe �rm are zero, i.e. αf = 0. The share of paybacks to

6If we had an emission damage function in the model, as in Montero (2008), the externality would consist
of two factors: an increase in the allowance price and the total damage of the bidder's own pollution.
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coalition ci is (see Appendix 4.A for derivation)7

αci =


niλδ

2(n−niλ)(1−δ) if Dva
−ci(0) ≥ L

niλδ
2(n−niλ)(1−δ)

[
1−

(
n−niλ−nδ

niλδ

)2
]
, if Dva

−ci(0) < L
. (4.19)

Keeping the number of strategic �rms n �xed, the share of paybacks to coalition ci increases

in the size of collusive �rms ni, in the market share of strategic �rms λ and in the stringency of

the environmental policy δ. Thus it is pro�table for strategic �rms to form a grand coalition

cgc with ngc = n. The share of paybacks to the grand coalition is

αgc =


λδ

2(1−λ)(1−δ) , if 1− λ ≥ δ

λδ
2(1−λ)(1−δ)

[
1−

(
1−δ−λ
λδ

)2
]
, if 1− λ < δ

.

The total costs of bidder x = f, cgc are from (4.18) TCva
x =

q0x́

l∗x

{θ − βxz} dz + (1− αx) p∗l∗x,

where p∗ = (1− δ) θ; l∗gc = λ δθ
β
; and l∗f = (1− λ) δθ

β
. Due to the e�cient allocation, the total

abatement costs of the entire industry are minimized:

ACva = ACe =

Q0ˆ

L

{θ − βz} dz (4.20)

=
(1− δ)2 θ2

2β
.

Hence there is no welfare loss due to e�cient allocation in the Vickrey auction,

∆ACva =
ACva − ACe

ACe
= 0.

Furthermore, the �competitive revenues� are Re = p?L = (1−δ)δθ2
β

. The share of paybacks and

thus the relative revenue loss compared to there being competitive revenues is

∆Rva =
Re −Rva

Re
= λαgc =


λ2δ

2(1−λ)(1−δ) , if 1− λ ≥ δ

λ2δ
2(1−λ)(1−δ)

[
1−

(
1−δ−λ
λδ

)2
]
, if 1− λ < δ

. (4.21)

7The correction, when Dva
−ci(0) < L, is due to the fact that the inverse residual supply cannot be negative.
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4.3.2 Uniform price auction

In a uniform price auction it is no longer pro�table to report demand truthfully as long as

�rms can in�uence the auction price. The objective of coalition ci is to minimize its total

costs with respect to the slope of the bid function bci :

min
bci

TCupa
ci

(bci) =

q0ciˆ

lci (bci )

uci(z)dz + lci(bci)RS
−1
ci

(lci(bci)). (4.22)

However, bidders have to take into account other bidders' actions and how their own actions

a�ect other bidders' actions. Hence coalitions play a non-cooperative game. The �rst-order

condition of (4.22) is written as

0 = −uci(lci)
dlci
dbci

+RS−1
ci

(lci)
dlci
dbci

+ lci
dRS−1

ci
(lci)

dlci

dlci
dbci

(4.23)

RS−1
ci

(lci) = uci(lci)− lci
dRS−1

ci
(lci)

dlci
.

Consider coalition structure C =
{
η

(m1)
1 , η

(m2)
2 , . . . , η

(mh)
h

}
. By symmetry, coalitions of equal

size use symmetric strategies. In equilibrium, Pκi(lκi) = RS−1
κi

(lκi). Assuming RS−1
κi

(lκi) > 0

and lκi > 0, this yields from (4.23):

bκi = βκi +

 1

mi−1
bκi

+
∑h

j 6=i

{
mj
bκj

}
+ 1

βf

 .

Solving this for bκi gives a quadratic equation:

Γκib
2
κi

+ ((mi − 2) βf − Γκiβκi) bκi − (mi − 1) βfβκi = 0,

where Γκi = 1 + βf
∑h

j 6=i

{
mj
bκj

}
. Because bκi ≥ βκi we get the best response strategy for

coalition κi as

bκi ≡ BRκi(b−κi) (4.24)

=
1

2

βκi − (mi − 2

Γκi

)
βf +

√(
βκi +

(
mi − 2

Γκi

)
βf

)2

+ 4
βfβκi
Γκi

 ,
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where b−κi =
(
bκ1 , . . . , bκi−1

, bκi+1
, . . . , bκh

)
denotes the vector of strategies other than coali-

tions κi.

The slopes of the bid functions are strategic complements. Thus the best response functions

are increasing in other bidders' strategies. The less aggressive other bidders play (the steeper

their bid functions), the steeper the bid function of bidder κi. Without the fringe, the bid

functions of strategic �rms could have in�nite slopes. Wilson (1979) has shown the possibility

of extreme low price equilibria in uniform price auctions. With a big enough fringe or with

an endogenous supply, this can be avoided.

The BRκi(b−κi) function is derived similarly as in Klemperer and Meyer (1989), where

they de�ne unique supply function equilibrium using exogenous uncertainty in the industry

demand (see also Akgün 2004). The demand in Klemperer and Meyer is analogous to the

residual supply for strategic �rms RSs(p) ≡ L− u−1
f (p) in this paper. Without uncertainty,

Klemperer and Meyer show with a general model that there is an in�nite number of supply

functions which satisfy the su�cient and necessary conditions for the optimum. In this model,

I restrict the demand functions to be linear and to have a constant intercept parameter θi = θ.

This is common knowledge to all bidders. Thus the demand function is fully de�ned for the

whole support by a single parameter, i.e. the slope of the bid function. By this construction,

I de�ne the unique demand function equilibrium as b̂ =
(
b̂κ1 , . . . , b̂κh

)
and the equilibrium

price is thus written as

p̂ = θ − 1(
1
βf

+
∑h

i=1
mi
b̂κi

)L. (4.25)

The allocation of allowances to bidder x = f, κi is l̂x = θ
bx
− 1

bx
p̂, where bf = βf . The total

costs from (4.12) can be decomposed into the abatement costs ACupa
x =

q0x́

l̂x

{θ − βxz} dz and

into the auction payments (revenues) Rupa
x = p̂l̂x. The relative welfare loss due to ine�cient

allocation is thus

∆ACupa =

q0f́

l̂f

{θ − βfz} dz +
∑h

i=1 mi

q0κi´
l̂κi

{θ − βκiz} dz

Q0´
L

{θ − βz} dz
− 1, (4.26)

and the relative revenue loss is

∆Rupa = 1− p̂

p∗
. (4.27)
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4.3.3 Comparison of the Vickrey and uniform price auctions - a

numerical example

Figure 4.1 illustrates the di�erence between the Vickrey auction (the left panel) and the

uniform price auction (the right panel) in the case of a grand coalition (a cartel). Initially,

the market is equally shared between the fringe and strategic �rms. Thus the initial emissions

of the cartel and the fringe are equal q0
f = q0

gc and they both have identical (true) inverse

demand functions ugc (qgc) = uf (qf ). The pollution target is to halve total emissions from

business-as-usual Q0. Hence, the parameter values of this numerical example are λ = δ = 0.5

and the abatement costs are normalized such that θ = 100 and β = 1.

In the Vickrey auction, both bidders (the cartel and the fringe) bid truthfully and the al-

lowance allocation is cost-e�cient. The abatement costs of both the fringe and the cartel

are illustrated by ACva
gc (the red triangle). In the auction they both pay �rst the amount of

Rf = p?l?f , but the cartel receives paybacks and the �nal payment of the cartel is Rva
gc (the

blue triangle).

In the uniform price auction, the cartel reduces its demand and reports schedule P upa
gc (qgc),

which lies below the true demand function ugc (qgc) at every positive qgc. Due to demand

reduction (or bid-shading), the cartel receives allowances of an amount which is strictly less

than in the Vickrey auction. The abatement costs of the cartel, ACupa
gc , are thus higher than

in the second-best. However, the equilibrium price of allowances is lower than the second-best

price and the auction revenues from the cartel are only Rupa
gc = p̂l̂gc. Interestingly, the strategic

behavior of the cartel makes fringe �rms strictly better o� because the allowance price is lower.

The abatement costs of the fringe are reduced to the triangle ACupa
f ≡ 4(Xl̂fq

0
f ) and the

regulator collects revenues from the fringe amounting to Rupa
f = p̂l̂f . The total costs of the

fringe are lower than in the Vickrey auction and the costs are lower than the total costs of

the cartel.

Comparing the results of the example drawn in Figure 4.1, we may conclude that the Vickrey

auction is strictly a better auction design from the regulator's point of view in the case of a

grand coalition, if the objective of the regulator is to achieve e�cient allocation of allowances

and to maximize the revenues of the auction. The total abatement costs are minimized and

the revenues are larger than in a uniform price auction. Given these parameter values, the

total abatement costs are ACva = 1250 and ACupa = 1389, and the revenues are Rva = 1875

and Rupa = 1667. However, a grand coalition may not be stable in the case of a uniform price

auction, because each member of the cartel may have incentives to deviate from the cartel

due to the positive externality the cartel provides for outsiders. The willingness to deviate

depends on the coalition formation game. Three examples of these games are described next.
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4.4 Coalition formation

The coalition formation game is denoted by G =
{
N, (Σi)i∈N , (TCi)i∈N

}
, where N =

{1, . . . , n} is the set of strategic �rms, Σi is the set of membersip strategies of �rm i in

the game, and TCi = TC
(
ηl(i), C (σ)

)
is the payo� of �rm i for being a member of coalition

ηl given the coalition structure C (σ). The coalition structure C (σ) is de�ned by the strategy

vector of all �rms σ ∈ Σ ≡ Πi∈NΣi.

Before introducing the three coalition formation games, let me note that there are several

useful equilibrium concepts when explaining the stable coalition structures in these games.

In Appendix 4.B the reader will �nd de�nitions of Nash equilibrium (NE), strong Nash

equilibrium (SNE), and coalition-proof Nash equilibrium (CPNE), as well as de�nitions of

stand-alone stability and the concentration of a coalition.

In uniform price auctions, �rms inside coalitions are better-o� the more concentrated, and

thus the less competitive, the coalition structure is. However, in order to sustain large

coalitions, problems arise due to the positive externalities large coalitions provide to outsiders.

The more concentrated the coalition structure is, the more the outsiders gain. The stable

coalition structure should thus be such that no member of any coalition wants to deviate.

4.4.1 Cartel game with myopic �rms

The coalition formation game is called a cartel game if there is only a single coalition with

η1 ∈ [1, n] members. The rest of the strategic �rms are singletons, i.e. η2 = 1. Thus, the set

of membership strategies in the cartel game is Σi = {0, 1}, where σi = 0 means that �rm i

is a singleton in the auction game, whereas σi = 1 implies that �rm i joins the cartel. Hence

the coalition structure of the cartel game is C =
{
η

(1)
1 , 1(n−η1)

}
, where η1 =

∑n
i=1 σi. The

total costs of each cartel member TC (η1;C) and each individual strategic �rm TC (1;C) are

de�ned by the size of the cartel. If strategic �rms are myopic in the cartel game, two stability

conditions are required. These are internal and external stability (D'Aspremont et al. 1983).

De�nition 4.3. Let η̃1 denote the number of cartel members in the stable coalition struc-

ture of a cartel game with myopic �rms. In particular, the coalition structure CCGM ={
η̃

(1)
1 , 1(n−η̃1)

}
of the cartel game is internally stable if

TC
(
η̃1;CCGM

)
≤ TC (1;C ′) , (4.28)

where C ′ =
{

(η̃1 − 1)(1) , 1(n−η̃1+1)
}
.
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De�nition 4.4. Let η̃1 denote the number of cartel members in the stable coalition struc-

ture of a cartel game with myopic �rms. In particular, the coalition structure CCGM ={
η̃

(1)
1 , 1(n−η̃1)

}
of the cartel game is externally stable if

TC
(
1;CCGM

)
≤ TC (η̃1 + 1;C ′′) , (4.29)

where C ′′ =
{

(η̃1 + 1)(1) , 1(n−η̃1−1)
}
.

The �rst rule (4.28) implies that no individual cartel member wants to deviate from the

cartel. It is thus equivalent to the de�nition of stand-alone stability (see Appendix 4.B). The

second rule (4.29) implies that no individual strategic �rm wants to join the cartel. Hence

the coalition structure CCGM =
{
η̃

(1)
1 , 1(n−η̃1)

}
is a stable structure in a cartel game with

myopic �rms if it is both internally and externally stable according to De�nitions 4.3 and

4.4.

Table 4.1 provides an example of a uniform price auction with a cartel game of n = 30

strategic �rms. In the example, the market share of strategic �rms is λ = 0.5, the cost

parameters are θ = 100 and β = 1, and the pollution target is δ = 0.5. The stable structure

of the cartel game with myopic �rms is only η̃1 = 3 members in the cartel. Deviation from

the cartel is not pro�table, because from (4.28)

TC
(
3;
{

3(1), 1(27)
})

= 62.1270 < 62.1273 = TC
(
1;
{

2(1), 1(28)
})
.

Also, for an individual �rm it is not pro�table to join the three-�rm cartel, while from (4.29)

TC
(
4;
{

4(1), 1(26)
})

= 62.096 < 62.079 = TC
(
1;
{

3(1), 1(27)
})
.

In fact, the stable structure is independent of the model structure and the number of strategic

�rms for n ≥ 3. In every model I consider, the stable structure of the cartel game with myopic

�rms is CCGM =
{

3(1), 1(n−3)
}
and thus the Nash equilibrium (NE) of the game is all the

strategy pro�les where exactly three �rms have σi = 1, where {i} ⊂ c1 and remaining �rms

have σj = 0, where {j} ⊂ N \ c1. This is also a coalition-proof Nash equilibrium (CPNE),

because there are no self-enforcing deviations by any group from CCGM =
{

3(1), 1(n−3)
}
.

However, no strong Nash equilibria (SNE) can be found for this game. For every coalition

structure it is possible to �nd a pro�table deviation strategy for some group of �rms (see

Thoron 1998).8

8See the de�nitions of NE, SNE and CPNE in Appendix 4.B.
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Table 4.1: Per-member costs of the cartel game in the uniform price auction. Parameter
values: n = 30, θ = 100, β = 1, and λ = δ = 0.5.

η1 TC (η1;C) TC (1;C)

1 62.151 62.151

2 62.145 62.1273

3 62.1270 62.079

4 62.096 62.006

5 62.054 61.909

6 61.998 61.786

7 61.931 61.638

8 61.850 61.462

9 61.756 61.260

10 61.649 61.029

η1 TC (η1;C) TC (1;C)

11 61.528 60.768

12 61.393 60.476

13 61.244 60.151

14 61.079 59.792

15 60.898 59.395

16 60.701 58.960

17 60.486 58.483

18 60.253 57.961

19 60.002 57.390

20 59.730 56.768

η1 TC (η1;C) TC (1;C)

21 59.436 56.088

22 59.120 55.347

23 58.780 54.539

24 58.414 53.656

25 58.020 52.693

26 57.597 51.640

27 57.141 50.488

28 56.651 49.225

29 56.124 47.839

30 55.556 -

4.4.2 Cartel game with farsighted �rms

The primitives of a cartel game with farsighted �rms are similar to the cartel game with

myopic �rms. Hence there is only a single coalition, with η1 ∈ [1, n] members, and remaining

strategic �rms are singletons (η2 = 1). The set of membership strategies in the cartel game

is Σi = {0, 1}. Firm i is a singleton if σi = 0 and a member of the cartel if σi = 1. The

coalition structure of the game is C =
{
η

(1)
1 , 1(n−η1)

}
, where η1 =

∑n
i=1 σi.

The cartel game with farsighted �rms is similar to Carraro and Moriconi (1997) and Finus and

Rundshagen (2001). It is a special case of an equilibrium-binding agreement game (Ray and

Vohra 1997). If �rms are farsighted, larger cartels can be sustained. I explain the formation

of a stable structure again with the example of the uniform price auction described in Table

4.1. Consider, for instance, that the cartel contains η1 = 5 members in a uniform price

auction. If any of the cartel members was myopic, it would �nd deviation pro�table, because

playing as an individual strategic �rm against four-�rm cartel (and against the fringe, and

remaining individual strategic �rms) would provide greater pro�ts than being a member of

a cartel of �ve �rms. However, a farsighted �rm would notice that members of the four-�rm

cartel would also have incentives to deviate. Thus the outcome that a �ve-�rm cartel member

should compare its outcome to is not the outcome of a four-�rm cartel game but the outcome

of a three-�rm cartel game, which is a stable coalition structure even if �rms were myopic.

Now because

TC
(
5;
{

5(1), 1(25)
})

= 62.054 < 62.079 = TC
(
1;
{

3(1), 1(27)
})
,
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a deviation strategy would not be pro�table and the structure C =
{

5(1), 1(25)
}
is a stable

structure for a cartel game with farsighted �rms. Using similar reasoning the structure

C =
{

8(1), 1(22)
}
is also a stable structure: 1) a �ve-�rm cartel is stable as we already

noticed; 2) if a �rm deviated from a cartel of η1 = 8 members, there would also be other

deviators until the cartel had only �ve members; 3) the total costs of a member of an eight-

�rm cartel are lower than the costs of a singleton in a uniform price auction with a �ve-�rm

cartel:

TC
(
8;
{

8(1), 1(22)
})

= 61.850 < 61.909 = TC
(
1;
{

5(1), 1(25)
})
.

In the case of our example, the stable structures of the cartel game are those structures for

which the number of cartel members belongs to a set ηCGF1 ∈ {3, 5, 8, 12, 18, 26} (see the rows
written in red in Table 4.1). If �rms are able to agree on binding cartel agreements and �rms

are farsighted, the most pro�table agreement is a coalition with the largest number of cartel

members: CCGF =
{
η̂

(1)
1,1, 1

(n−η̂1,1)
}
, where η̂1,1 = max

(
ηCGF1

)
. I call this the least competitive

stable structure and it is the most concentrated structure of the set of stable structures. The

least competitive stable structure with n = 30 would then be CCGF =
{

26(1), 1(4)
}
. Stable

structures depend on the number of strategic �rms n, but also on the other parameter values.

For example, when λ = 0.7, the least competitive stable structure with otherwise the same

model (n = 30, θ = 100, β = 1, and δ = 0.5) is CCGF =
{

24(1), 1(6)
}
. Table 4.2 presents all

the stable structures for n = 3, . . . , 100 strategic �rms in the example model with di�erent

market shares of oligopolistic �rms (λ ∈ (0.3; 0.5; 0.7).
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Table 4.2: Stable structures (ηCGF1 ) of the cartel game with farsighted �rms. Parameter
values: θ = 100, β = 1, and δ = 0.5.

n ηCGF1

∣∣λ = 0.3 ηCGF1

∣∣λ = 0.5 ηCGF1

∣∣λ = 0.7

3 3 3 3

4 3 3 3

5 3, 5 3, 5 3, 5

6 3, 5 3, 5 3, 5

7 3, 5 3, 5 3, 5, 7

8 3, 5, 8 3, 5, 8 3, 5, 7

9 3, 5, 8 3, 5, 8 3, 5, 7

10 3, 5, 8 3, 5, 8 3, 5, 8
...

...
...

...

20 3, 5, 8, 12, 18 3, 5, 8, 12, 17 3, 5, 8, 12, 17

30 3, 5, 8, 12, 18, 26 3, 5, 8, 12, 18, 26 3, 5, 8, 12, 17, 24

40 3, 5, 8, 12, 18, 26, 37 3, 5, 8, 12, 18, 26, 37 3, 5, 8, 12, 17, 24, 33

50 3, 5, 8, 12, 18, 26, 37 3, 5, 8, 12, 18, 26, 37 3, 5, 8, 12, 18, 26, 36, 48

60 3, 5, 8, 12, 18, 26, 37, 53 3, 5, 8, 12, 18, 26, 37, 52 3, 5, 8, 12, 18, 26, 37, 51

70 3, 5, 8, 12, 18, 26, 37, 53 3, 5, 8, 12, 18, 26, 37, 52 3, 5, 8, 12, 18, 26, 37, 51, 68

80 3, 5, 8, 12, 18, 26, 37, 53, 75 3, 5, 8, 12, 18, 26, 37, 52, 72 3, 5, 8, 12, 18, 26, 37, 52, 70

90 3, 5, 8, 12, 18, 26, 37, 53, 75 3, 5, 8, 12, 18, 26, 37, 53, 74 3, 5, 8, 12, 18, 26, 37, 52, 71

100 3, 5, 8, 12, 18, 26, 37, 53, 75 3, 5, 8, 12, 18, 26, 37, 53, 74 3, 5, 8, 12, 18, 26, 37, 52, 72, 96

De�ning the stable structure in CGF formally, we need a new de�nition for internal stability.

De�nition 4.5. Let ηCGF1 ∈ {η̂1,1, η̂1,2, η̂1,3, ...} denote the set of numbers of cartel members

in all the stable coalition structures of the cartel game with farsighted �rms, with η̂1,i > η̂1,j

for all i > j. In particular, the coalition structure CCGF
i =

{
η̂

(1)
1,i , 1

(n−η̂1,i)
}
of the cartel game

is internally stable if

1. for all η̂1,i > min
(
ηCGF1

)
,

TC
(
η̂1,i;C

CGF
i

)
≤ TC

(
1;CCGF

i+1

)
, (4.30)

where CCGF
i+1 =

{
η̂

(1)
1,i+1, 1

(n−η̂1,i+1)
}
; and

2. for η̂1,i = min
(
ηCGF1

)
, the coalition structure CCGF

i =
{
η̂

(1)
1,i , 1

(n−η̂1,i)
}

is stand-alone

stable.

Hence the coalition structure CCGF
i =

{
η̂

(1)
1,i , 1

(n−η̂1,i)
}
is a stable structure of the cartel game

with farsighted �rms if it is both internally and externally stable according to De�nitions

162



4.4 and 4.5. However, in De�nition 4.4 one needs to change CCGM to CCGF
i and thus

C ′′ =
{

(η̂1,i + 1)(1) , 1(n−η̂1,i−1)
}
.

In a cartel game with myopic �rms, the solution concept is CPNE, whereas the stable

structure in a cartel game with farsighted �rms is not any of NE, SNE or CPNE, unless

η̂1,i = min
(
ηCGF1

)
. The notions of NE, SNE and CPNE consider only the deviation strate-

gies of deviators, keeping the other agents' strategies �xed. However, in the cartel game with

farsighted �rms, the stable structure is determined by the deviations of those players outside

the group of original deviators. Also, while there are several stable structures in the cartel

game with farsighted �rms, the cartel agreement of the least competitive stable structure

must be more binding than the stable structures of the two other coalition formation games

considered in this paper, which both have unique stable structures.

4.4.3 Open membership game

Yi (1997), Yi and Shin (2000) and Finus and Rundshagen (2001), for instance, examine an

open membership game with positive externalities. It is a simultaneous move game, where

players are allowed to form coalitions freely, as long as no player is exluded from joining a

coalition.9 In the coalition formation process, players announce messages (or addresses). If

two or more players have announced the same message, they form a coalition. Formally, player

i ∈ N can choose any message from the strategy set Σj = {0, σ1, . . . , σn} = {0, 1, . . . , n}.
The strategy σj = 0 means that �rm j is a singleton and σj = σi that �rm j joins coalition

ci. Let aj be �rm j's action. If �rms j and l have chosen the same message, they belong to

the same coalition, i.e. if aj = al = σi, they both are members of coalition ci. For instance,

9If players can be exluded, the game is an exclusive membership game (e.g. Hart and Kurz 1983, Yi and
Shin 2000, Finus and Rundshagen 2001). These games may have multiple stable structures in the setup of
this paper, some of them more concentrated than the unique stable structure of the open membersip game.
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a strategy pro�le

σ =

1, . . . , 1︸ ︷︷ ︸
#1=η1

, 2, . . . , 2︸ ︷︷ ︸
#2=η1

, . . . ,m1, . . . ,m1︸ ︷︷ ︸
#m1=η1

,

(m1 + 1) , . . . , (m1 + 1)︸ ︷︷ ︸
#(m1+1)=η2

, . . . ,

(
2∑
i=1

mi

)
, . . . ,

(
2∑
i=1

mi

)
︸ ︷︷ ︸

#(
∑2
i=1mi)=η2

, . . . ,

(
h−1∑
i=1

mi + 1

)
, . . . ,

(
h−1∑
i=1

mi + 1

)
︸ ︷︷ ︸

#(
∑h−1
i=1 m1+1)=ηh

, . . . ,

(
h∑
i=1

mi

)
, . . . ,

(
h∑
i=1

mi

)
︸ ︷︷ ︸

#(
∑h
i=1mi)=ηh


constitutes a coalition structure C =

{
η

(m1)
1 , . . . , η

(mh)
h

}
.

Yi and Shin (2000) prove that if the following four conditions of the positive externality game

hold, there is a unique coalition-proof Nash equilibriumin in the open membership game.10

Condition 4.1. TC (ni;C
′) < TC (ni;C), where C ′ is more concentrated than C; ni ∈ C ′;

and ni ∈ C. (C.4.1.)

Condition 4.2. TC (ni;C) < TC (nj;C), where nj > ni, for any C = {n1, . . . , nm}.
(C.4.2.)

Condition 4.3. TC (nj;C) > TC (nj − 1;C ′), where C = {n1, . . . , nm}; C ′ = C \ {ni, nj}∪
{ni + 1, nj − 1}; and ni ≥ nj ≥ 2. (C.4.3.)

Condition 4.4. Suppose that C = {n1, . . . , nm} is stand-alone stable. If n1 ≥ nm + 2,

then there exists nj, n1 ≥ nj + 2, such that TC (n1;C) > TC (nj + 1;C ′), where C ′ =

C \ {n1, nj} ∪ {n1 − 1, nj + 1}. (C.4.4.)

The �rst condition (C.4.1) states that if the coalition structure becomes more concentrated

and coalition ci is not part of the concentration process, then members of ci are better-o�.

According to (C.4.2), a member of a small coalition is better-o� than a member of a large

coalition in any coalition structure. Condition (C.4.3) states that, if a member of a coalition

cj leaves its coalition and joins a larger or equal-size coalition ci, the remaining members of

coalition cj are better-o�. Finally, by (C.4.4), if the largest coalition in a stand-alone stable

coalition structure exceeds the size of the smallest coalition by 2 or more, a member of the

largest coalition becomes better-o� by joining a coalition, which is smaller by 2 or more than

10Again, see the de�nitions of stand-alone stability and the concentration of a coalition in Appendix 4.B.

164



the largest coalition. Hence, given the conditions (C.4.1) - (C.4.4), the stable structure must

be symmetric with only one or two types of coalitions. Moreover, if there are two types of

coalitions, the size of these types must be such that η1 = η2 + 1.

Conditions (C.4.1) - (C.4.3) hold trivially in the uniform price auction game. I do not prove

analytically that condition (C.4.4) also holds. However, I apply a numerical simulation and

check that the unique coalition-proof Nash equilibrium introduced by Yi and Shin (2000) is

a stable structure in the open membership game with a uniform price auction. The stable

coalition structure can be characterized by the following proposition.

Proposition 4.1. (Yi and Shin 2000, Proposition 5.) Let I(n/m) denote the next higher

integer to n/m including n/m. Furthermore, suppose that C? =
{
k?(m

?−r?), (k? − 1)(r?)
}

is stand-alone stable, where k? = I(n/m?) and r? = m?k? − n (≥ 0). Suppose also that

C ′ =
{
k′(m

′−r′), (k′ − 1)r
′
}
is not stand-alone stable, where k′ = I(n/m′) and r′ = m′k′ − n,

for all m′ = 1, . . . ,m? − 1. Then, in the open memebership game:

1. under (C.4.4), C? is the most concentrated Nash equilibrium coalition structure; and

2. under (C.4.1) - (C.4.4), C? is the unique coalition-proof Nash equilibrium coalition

structure.

Proof. Yi and Shin (2000, Appendix A).�

Yi and Shin (2000) examine the formation of research coalitions with positive spillovers.

Finus and Rundshagen (2001) model coalition formation in a problem of global pollution

control. Both models use a linear-quadratic Cournout structure and are thus close to the

model of this paper. In Yi and Shin (2000) and in Finus and Rundshagen (2001) the stable

structure of the open membership game is given by k? = 3 (see Proposition 4.1). More

formally, the stable structure of the open membership game with a uniform price auction can

be characterized by the following corollary.

Corollary 4.1. Let m3 ≡ (m : I(n/m) = 3), where I(n/m) denotes the next higher integer

to n/m including n/m, and r3 ≡ 3m3 − n. Then, for n ≥ 3, the stable structure of the open

membership game with the linear-quadratic model and the uniform price auction is

COMG =
{
η̄

(m̄1)
1 , η̄

(m̄2)
2

}
=
{

3(m3−r3), 2(r3)
}
.

The proof of Corollary 4.1. is omitted, but it is similar to the proof of Proposition 5 in Yi and

Shin (2000) or Proposition 11 in Finus and Rundshagen (2001). However, I show in Appendix
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4.C, applying a numerical simulation that COMG =
{
η̄

(m̄1)
1 , η̄

(m̄2)
2

}
is the unique stable struc-

ture of all the symmetric coalition structures Ck =
{
k(mk−rk), (k − 1)r

k
}
, mk = 1, . . . , n,

where k = I(n/mk) and rk = mkk − n. Ignoring integer constraints, these structures may

also be written as: {n},
{
n
2
, n

2

}
,
{
n
3
, n

3
, n

3

}
,
{
n
4
, n

4
, n

4
, n

4

}
,..., {2, 2, . . . , 2}, {2, 2, . . . , 2, 1, 1},...,

{2, 1, 1, . . . , 1}, and{1, 1, . . . , 1} (see Yi and Shin 2000). Even though there is a unique

coalition-proof stable structure, there is a number of strategy pro�les which constitute this

coalition structure. Hence the coalition-proof Nash equilibrium in the coalition formation

stage is any strategy pro�le which has a form equal to the strategy pro�le

σ? = {1, 1, 1, 2, 2, 2, . . . , m̄1, m̄1, m̄1, (m̄1 + 1) , (m̄1 + 1) , . . . , (m̄1 + m̄2) , (m̄1 + m̄2)} .

4.5 Results

In this section I run numerical simulations of the coalition game with the two alternative

auction designs. In the simulations I use �xed values for the parameters θ = 100, β = 1 and

δ = 0.5. However, I let the number of strategic �rms n run from 3 to 100 and give di�erent

values for the share of the oligopolistic market: λ ∈ (0.3; 0.5; 0.7). I calculate the welfare

and auction revenue e�ects from (4.21), (4.26) and (4.27) given the share of the oligopolistic

market, the number of strategic �rms and the stable structures of di�erent coalition formation

games. With the Vickrey auction, strategic �rms form a grand coaltion in every coalition

formation game. With the uniform price auction, the stable structure and thus the results

are di�erent depending on the coalition formation game. When comparing the results, the

benchmark case is the second-best allocation of allowances, where the equilibrium price is

p∗ = (1− δ) θ, the total abatement costs are ACe = (1−δ)2θ2
2β

and the total revenues collected

are the competitive revenues Re = (1−δ)δθ2
β

.

Figure 4.2 shows the excess abatement costs relative to the benchmark. For instance, if

the number of strategic �rms is 5, the aggregate abatement costs after UPA with the open

memebership game (UPA-OMG, the red line) are 0.6%, 2.7% and 7.8% higher than in the

second-best as the share of the oligopolistic market λ is assigned the value 0.3, 0.5 and 0.7,

respectively. However, the excess abatement costs decrease quite rapidly as the number of

strategic �rms increases. Already for n = 10, the relative welfare loss is 0.1%, 0.6% and

1.3%, respectively.

The welfare loss is smaller and decreases even more rapidly with the cartel game with myopic

�rms (UPA-CGM, the blue dashed line), but if �rms are farsighted and form the least com-

petitive cartel agreement (UPA-CGF, the blue solid line), the welfare loss varies between 0.8
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- 2.3% for λ = 0.3, between 3.8 - 11.1% for λ = 0.5, and between 12.8 - 39.6% for λ = 0.7.

The welfare loss depends heavily on the number of members in the least competitive stable

structure. The Vickrey auction (VA, the black line) provides the second-best allocation and

thus no welfare loss.
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Figure 4.2: Welfare loss. Parameter values: θ = 100, β = 1, and δ = 0.5.
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Figure 4.3: Revenue loss. Parameter values: θ = 100, β = 1, and δ = 0.5.

Figure 4.3 shows the loss of revenues relative to the competitive revenues, i.e. if the auctioneer

received the second-best price for all the allowances auctioned. Where the Vickrey auction

did not produce any welfare loss due to the e�cient allocation of allowances, the revenues will

be much lower than in the competitive auction at least when the market share of strategic

�rms is high. This is due to collusion. The revenue losses of the Vickrey auction are 6.4%,

25% and 55% for λ with values of 0.3, 0.5 and 0.7, respectively. The number of strategic

�rms has no e�ect on revenue losses, because in every model structure strategic �rms act as

if there were only one single monopolistic �rm.

Again, in the uniform price auction the revenue losses depend highly on the coalition game
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considered. With the myopic cartel game (UPA-CGM) and the open membersip game (UPA-

OMG), the revenue losses are fairly modest already for n = 20 strategic �rms, irrespective

of the market share of strategic �rms. Again, the revenue losses are much higher if �rms

are farsighted (UPA-CGF). In that case the revenue losses �uctuate around the revenue loss

of the Vickrey auction and are highly dependent on the number of strategic �rms and the

number of members in the least competitive stable coalition.

We can conclude that if cartel agreements are weak and there are not too few strategic

�rms, the uniform price auction may be approximately equal to the competitive market. A

weak cartel agreement means (in uniform price auctions) that strategic �rms cannot make a

binding agreement on collusive bidding. Instead, some �rms, individually or jointly, �nd it

pro�table to deviate from the cartel due to the fact that cartel makes outsiders better o�.

Thus, in equilibrium, the allocation of allowances is almost second-best (for large n) and the

auction revenues are almost as great as in the competitive market, at least for a large enough

market share of the fringe. If, on the other hand, farsighted �rms can agree on the least

competitive cartel agreement, the uniform price auction will not o�er an e�cient allocation

and the auction revenues will be relatively low, at least for a large market share of strategic

�rms. Using the Vickrey auction, the regulator can always guarantee e�cient allocation but

the auction revenues will decrease in increasing collusive behavior, which, on the other hand,

is pro�table for strategic �rms.

4.6 Conclusions

I have compared two auction mechanisms to allocate emission allowances when �rms are

able to collude: the Vickrey auction and the uniform price auction. Firms may form multiple

coalitions and the two-stage game reduces to a one-stage coalition formation game using the

partition function approach (Yi 2003). Firms may trade emission allowances inside but not

between coalitions after the auction. Hence I have assumed that there are no resale markets.

This is of course a very simplifying assumption and does not hold in existing emissions

markets. However, the model gives some insights into the incentives the various auction

mechanisms provide for participating �rms.

With private values, the Vickrey auction provides an e�cient allocation of pollution rights

but at the same time strong incentives for �rms to coordinate their bids in an auction. This

reduces the revenues. Modeling the uniform price auction is a more complex task even in

the relatively simple framework of this paper. I have applied a linear-quadratic model and

a fringe of competitive �rms, which balances the market. By these simplifying assumptions
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I have been able to derive a unique Nash equilibrium of the auction. In addition, I have

considered three coalition formation games.

Depending on the coalition game, the results of the uniform price auction vary substantially.

It should be noted that I have considered only three examples of coalition formation games.

However, the interpretation of the results of the uniform price auction is the following. The

regulator should understand the market structure in order to estimate the risk of collusion

and low price equilibria. First, if the market share of strategic �rms is relatively small, the

welfare loss and the revenue loss are naturally relatively low. Second, even if the market

share of strategic �rms is high, but not too high, and if coalition formation is free, the

market behaves almost competitively, unless there are only a few strategic �rms. However, if

(farsighted) �rms can coordinate coalition formation and form only a single cartel, then the

collusion might be a threat to the regulation.
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Appendices

4.A Vickrey auction payback functions.

Given that truthful bidding is a dominant strategy in the Vickrey auction, the residual supply

function for coalition ci can be simpli�ed as:

RS−1
ci

(qci) = max

0,

θ −
 1

m∑
j 6=i

1
bcj

+ 1
βf

L+

 1
m∑
j 6=i

1
bcj

+ 1
βf

 qci




= max

0,

θ −
(

nβ

n− niλ

)
L︸ ︷︷ ︸

Ωci

+

(
nβ

n− niλ

)
︸ ︷︷ ︸

τci

qci




= max [0, (Ωci + τciqci)] ,

where I have used bcj = βcj = n
njλ
β and βf = 1

1−λβ. Equalizing this with the true inverse

demand function (4.13) gives the second-best solution:

lci =
niλ

n
L.

Using RS−1
ci

(qci) = Ωci+τciqci from above, the paybacks of coalition ci in the VCG mechanism

are derived using

αci = 1−

lci´
q̂ci

(Ωci + τcix) dx

(Ωci + τcilci) lci

=
1

2

 1

1 +
Ωci
τci lci

+
Ωci q̂ci + 1

2
τci q̂

2
ci

Ωcilci + τcil
2
ci

,

where q̂ci = max
[
0,−Ωci

τci

]
. Now, provided that Dva

−ci(0) ≥ L, and thus q̂ci = 0, the share of

the paybacks is

αci =
1

2

(
niλ

n− niλ

)(
δ

1− δ

)
,

where I have used Ωci ,τci , and L = δQ0 = δ θ
β
. If, on the other hand, Dva

−ci(0) < L, then
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q̂ci = −Ωci
τci

=
θ(δ−1+

niλ

n )
β

> 0, and we thus get

αci =
1

2

(
niλ

n− niλ

)(
δ

1− δ

)
−

q̂2
ci

2lci (lci − q̂ci)

=
1

2

(
niλ

n− niλ

)(
δ

1− δ

)
−

(
1− δ − niλ

n

)2

2δ
(
niλ
n

)
(1− δ)

(
1− niλ

n

)
=

niλδ

2 (n− niλ) (1− δ)

[
1−

(
n− niλ− nδ

niλδ

)2
]
.

For example, in the case of a grand coalition c1 ≡ cgc (and thus n1 = n), we get lgc = λ δθ
β
;

Ωgc =
(
1− δ

1−λ

)
θ; and τgc = β

1−λ . Furthermore, if 1− λ ≥ δ,

αgc =
λδ

2 (1− λ) (1− δ)
,

and if 1− λ < δ the share of the grand coalition paybacks is

αgc =
λδ

2 (1− λ) (1− δ)

[
1−

(
1− δ − λ

λδ

)2
]
.

4.B Equilibrium concepts of coalition formation games

Consider a coalition formation game G =
{
N, (Σi)i∈N , (TCi)i∈N

}
. Moreover, consider any

group of �rms S ⊂ N and let σN\S = (σj)j∈N\S denote a pro�le of strategies of all �rms not

included in coalition S. For every coalition S ⊂ N , the restriction of game G to �rms in S

is de�ned as

ḠS =
{
S, (Σi)i∈S ,

(
TCi

)
i∈S

}
,

where the strategies of other �rms outside S, i.e. (σ̄j)j∈N\S, are held �xed and, for every �rm

i ∈ S and every strategy σi ∈ Σi,

TCi = TC
(
ηl(i), C

(
(σi)i∈S , (σ̄j)j∈N\S

))
.

De�nition 4.6. The pro�le of strategies σ? = (σ?1, . . . , σ
?
n) is a Nash equilibrium (NE) of

game G if for all i ∈ N and every σi ∈ Σi

TC
(
ηl(i), C (σ?)

)
≤ TC

(
ηl(i), C

(
σi, σ

?
N\{i}

))
.

174



De�nition 4.7. The pro�le of strategies σ? = (σ?1, . . . , σ
?
n) is a (strictly) strong Nash equi-

librium (SNE) of game G if there exists no S ⊂ N and σS ∈ Πi∈SΣi, such that

TC
(
ηl(i), C (σ?)

)
≥ TC

(
ηl(i), C

(
σS, σ

?
N\S
))
,

for all i ∈ S, and
TC

(
ηl(i), C (σ?)

)
> TC

(
ηl(i), C

(
σS, σ

?
N\S
))
,

for at least one i ∈ S.

De�nition 4.8. (i) Suppose n = 1. Then strategy σ?1 is a (strictly) coalition-proof Nash

equilibrium (CPNE) of game G if and only if it is a Nash equilibrium.

(ii) Suppose n > 1 in game G. Then the pro�le of strategies σ? = (σ?1, . . . , σ
?
n) is a (strictly)

self-enforcing pro�le of strategies if for all S ⊂ N , (σ?i )i∈S is a (strictly) coalition-proof Nash

equilibrium (CPNE) of game ḠS, which is a restriction of game G to �rms in S.

(iii) The pro�le of strategies σ? = (σ?1, . . . , σ
?
n) is a (strictly) coalition-proof Nash equilibrium

of game G if it is (strictly) self-enforcing and there is no other (strictly) self-enforcing pro�le

σ′ such that

TC
(
ηl(i), C (σ?)

)
≥ TC

(
ηl(i), C (σ′)

)
,

for all i ∈ N , and

TC
(
ηl(i), C (σ?)

)
> TC

(
ηl(i), C (σ′)

)
,

for at least one i ∈ N .

In NE no single �rm �nds it pro�table to deviate from the given coalition structure, whereas

SNE requires that deviations of any subgroup of �rms are not pro�table. Hence a SNE is

also NE. In many games the requirement of SNE is too strict, because SNE may not exist.

CPNE requires that deviations of any subgroup, which are self-enforcing, are not pro�table.

Hence, SNE must also be CPNE and while any singleton {i} is also a subgroup S ⊂ N ,

we may write SNE ⊂ CPNE ⊂ NE.11 Also, the following two de�nitions are useful (see Yi

1997).

De�nition 4.9. (Yi 1997, De�nition 5.1.) Coalition structure C = {n1, . . . , nm} is stand-

alone stable if and only if TC (ni;C) ≤ TC (1;C ′) where C ′ = C \ {ni} ∪ {ni − 1, 1} for all

i = 1, . . .m.

11Note that the deviation strategies used in de�nitions 4.7 and 4.8 are weak deviations. Using strict
deviations instead would mean that a group of �rms deviates only if all of its members are better-o�, which
would give de�nitions of a weakly strong Nash equilibrium and a weakly coalition-proof Nash equilibrium
(CPNE) (see e.g. Konishi et al. 1999).
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De�nition 4.10. (Yi 1997, De�nition 2.2.) Coalition structure C = {n1, . . . , nm} is a

concentration of C ′ = {n′1, . . . , n′m′}, m′ ≥ m, if and only if there exists a sequence of

coalition structures C1 =
{
n1

1, . . . , n
1
m(1)

}
, C2 =

{
n2

1, . . . , n
2
m(2)

}
, ..., CR =

{
nR1 , . . . , n

R
m(R)

}
such that

1. C = C1 and C = CR; and

2. Cr−1 = Cr \
{
nri(r), n

r
j(r)

}
∪
{
nri(r) + 1, nrj(r) − 1

}
, nri(r) ≥ nrj(r), for some i (r), j (r) =

1, . . . ,m (r) and for all r = 2, . . . , R.

4.C Stable structure in the open membership game with a uniform

price auction.

Let COMG =
{
η̄

(m̄1)
1 , η̄

(m̄2)
2

}
denote the stable structure of the open membership game with a

uniform price auction introduced in Corollary 4.1. First, to give an alternative, and perhaps

a more clear, de�nition of this stable structure, Finus and Rundshagen (2001, Proposition

11) de�nes the structure COMG as follows (for n ≥ 3):

COMG =
{
η̄

(m̄1)
1 , η̄

(m̄2)
2

}
=


{

3(m?), 2(0)
}
, if R = 0{

3(m?−1), 2(2)
}
, if R = 1{

3(m?), 2(1)
}
, if R = 2

,

where m? = Î(n/3), with Î(n/k) denoting the closest integer lower or equal to n/k , and

R = n− 3m? ∈ (0, 1, 2). Note that Î(n/k) is not equal to I(n/m) in Corollary 4.1.

Consider next a symmetric coalition structure Ck =

{
η
(mk1)
1 , η

(mk2)
2

}
=
{
k(mk−rk), (k − 1)r

k
}
,

where k = I(n/mk) and rk = mkk − n. Thus C3 = COMG. Consider also the following

neighboring structures:

Ck
η1,η1

=

{
(η1 + 1)(1) , η

(mk1−2)
1 , η

(mk2+1)
2

}
, if mk

1 > 1,

Ck
η1,0

=

{
η
(mk1−1)
1 , η

(mk2+1)
2 , 1(1)

}
, if mk

1 ≥ 1,
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and

Ck
η2,η1

=

{
(η1 + 1)(1) , η

(mk1−1)
1 , η

(mk2−1)
2 , (η2 − 1)(1)

}
, if mk

1,m
k
2 ≥ 1,

Ck
η2,0

=

{
η
(mk1)
1 , η

(mk2−1)
2 , (η2 − 1)(1) , 1(1)

}
, if mk

2 ≥ 1,

Ck
η2,η2

=

{
η
(mk1+1)
1 , η

(mk2−2)
2 , (η2 − 1)(1)

}
, if mk

2 > 1.

The �rst two neighboring structures describe the deviation structures for which a member of

a larger coalition κ1 deviates. Hence in Ck
η1,η1

a member of coalition κ1 joins another coalition

of the same size. In Ck
η1,0

a member of coalition κ1 deviates and becomes a singleton. I do not

consider the neighboring structure Ck
η1,η2

, i.e. if a member of coalition κ1 joins coalition κ2,

because the coalition structure would remain the same and it would not change the payo�

of the deviating �rm. The last three neighboring structures describe the structures where a

member of a smaller coalition κ2 deviates. In Ck
η2,η1

the deviating �rm joins a larger coalition

κ1, in Ck
η2,0

it becomes a singleton and in Ck
η2,η2

it joins coalition κ2.

The structure Ck is not stable if any of the deviating strategy provides lower total costs for

a single deviating �rm:
TC

(
k;Ck

)
> TC

(
k + 1;Ck

η1,η1

)
,

TC
(
k;Ck

)
> TC

(
1;Ck

η1,0

)
,

and
TC

(
k − 1;Ck

)
> TC

(
k + 1;Ck

η2,η1

)
,

TC
(
k − 1;Ck

)
> TC

(
1;Ck

η2,0

)
,

TC
(
k − 1;Ck

)
> TC

(
k;Ck

η2,η2

)
.

Table 4.3 presents the per-member total costs of coalitions for the stable structure of the

model COMG = C3 =
{

3(m3−r3), 2(r3)
}
and for the neighboring structures described above,

with parameter values n = 3, . . . , 100; θ = 100; β = 1; and δ = λ = 0.5. The per-member

costs are normalized such that the costs are compareable for di�erent n. The normalized

costs are thus denoted by TCn (ηi;C) = n
100
TC (ηi;C). Moreover, Table 4.4 presents the

same calculations for coalition structure C2 =
{

2(m2−r2), 1(r2)
}
and Table 4.5 for coalition

structure C4 =
{

4(m4−r4), 3(r4)
}
.

In all tables 4.3 - 4.5, the per-member costs of the deviating �rm are written in either

blue or red. If the per-member costs of the deviator are written in blue, the deviation

strategy is not pro�table for the deviator. On the other hand, the red color indicates that

the deviator is better-o� if it deviates. Note that I have omitted coalition structures C2
η2,0

and C2
η2,η2

from Table 4.4, because C2
η2,η2

is not feasible, and C2
η2,0

is equal to C2 and thus

TC (1;C2) = TC
(
1;C2

η2,0

)
by assumption.
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The structure COMG = C3 is indeed the unique stable structure, while there are no pro�table

deviation strategies for a single �rm. Also, deviations of any larger group of �rms are not

pro�table. This is intuitively clear while (according to Condition 4.4) any pro�table deviation

from COMG = C3 must be such that the size of a new coalition of deviating �rms is smaller

than the original coalition.12 Hence, if no single �rm �nds deviation pro�table, the deviation

of any subgroup of �rms must not be pro�table either.

Moreover, given the structure C4 (see Table 4.5), there is at least one pro�table single-�rm

deviating strategy for every n and thus C4 is not a stable structure. This is also true for all

other Ck, where k > 4, due to the breaking-down of the stand-alone stable condition.

With C2 (see Table 4.4) it is always pro�table for a singleton to join a larger coalition,

while TC (1;C2) > TC
(
3;C2

η2,η1

)
, if m2

2 = 1. However, the neighboring structures will not

provide pro�table deviations if m2
2 = 0. Even though if there is no pro�table strategy for a

single deviator from coalition κ1 in C2, the deviation may a�ect other players' incentives to

deviate. Thus there are pro�table deviation strategies for some subgroup of �rms. This can

be described with the following example. Consider the case n = 6 and thus the structure

C2 =
{

2(3)
}
in Table 4.4. Suppose that one of the �rms deviates and joins another coalition.

This gives a structure C2
η1,η1

=
{

3(1), 2(1), 1(1)
}
. Note that this is exactly the same structure

as C3
η1,0

in Table 4.3 with n = 6. According to Table 4.3, the singleton of this structure will

�nd it pro�table to join coalition {2}, because

TCn
(
1;C3

η1,0

)
= 17.306 > 17.265 = TCn

(
3;C3

)
.

Hence, even if the original deviation does not seem to be pro�table, while (see Table 4.4)

TCn
(
2;C2

)
= 17.712 < 17.763 = TCn

(
3;C2

η1,η1

)
,

the resulting structure is not C2
η1,η1

= C3
η1,0

, but the stable structure C3. Thus, at the end of

the day, the deviation is pro�table, because (see tables 4.3 and 4.4)

TCn
(
2;C2

)
= 17.712 > 17.265 = TCn

(
3;C3

)
.

A similar story can be told for every n for which m2
2 = 0. Thus, C2 is not a stable structure

either. Hence, C3 is the unique stable structure of all symmetric coalition structures Ck ={
k(mk−rk), (k − 1)r

k
}
, mk = 1, . . . , n, where k = I(n/mk) and rk = mkk − n.

12Suppose that one or more �rms deviate to larger coalitions. If those deviations are pro�table, the resulting
coalition structures violate, presumably, the stand-alone stability and are thus not CPNE. Calculations are
however omitted.
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